Dalton Transactions
Paper
capillary. A hemisphere of data was collected using ω scans,
with 10-second frame exposures and 0.5° frame widths. Data
collection and initial indexing and cell refinement were
handled using APEX II software.19 Frame integration, includ-
ing Lorentz-polarization corrections, and final cell parameter
calculations were carried out using SAINT+ software.20 The
data were corrected for absorption using redundant reflections
and the SADABS program.21 Decay of reflection intensity was
not observed, as monitored by analysis of redundant frames.
The structures were solved using direct methods and differ-
ence Fourier techniques. Unless otherwise noted, non-hydro-
gen atoms were refined anisotropically and hydrogen atoms
were treated as idealized contributions. For compound 4, the
tin atom and two methyl groups (C(19) and C(20)) reside on a
mirror plane, with the third methyl group, C(21), and the aryl
amine group disordered across the mirror plane. The amine
nitrogen atom, N(1) and methyl group, C(21), were each
refined at one half-occupancy, with coordinates and tempera-
ture factors constrained to be identical. Hydrogen atom posi-
tions were not included in the model due to the disorder.
Structure solution, refinement, graphics, and creation of publi-
cation materials were performed using SHELXTL.22
2186–2190; (l) S. Tabassum and C. Pettinari, J. Organomet.
Chem., 2006, 691, 1761–1766; (m) M. A. Girasolo, C. Di
Salvo, D. Schillaci, G. Barone, A. Silvestri and G. Ruisi,
J. Organomet. Chem., 2005, 690, 4773–4783; (n) M. A. Girasolo,
D. Schillaci, C. Di Salvo, G. Barone, A. Silvestri and
G. Ruisi, J. Organomet. Chem., 2006, 691, 693–701.
2 (a) M. J. Selwyn, A. P. Dawson, M. Stockdale and N. Gains,
Eur. J. Biochem., 1970, 14, 120–126; (b) U. Wuthier,
H. V. Pham, R. Zuend, D. Welti, R. J. J. Funck, A. Bezegh,
D. Ammann, E. Pretsch and W. Simon, Anal. Chem., 1984,
56, 535–538; (c) V. M. Shkinev, B. Y. Spivakov,
G. A. Vorob’eva and Y. A. Zolotov, Anal. Chim. Acta, 1985,
167, 145–160; (d) R. Bloch, A. Shatkay and H. A. Saroff,
Biophys. J., 1967, 7, 865–877; (e) N. A. Chaniotakis,
S. B. Park and M. E. Meyerhoff, Anal. Chem., 1989, 61, 566–
570; (f) S. S. S. Tan, P. C. Hauser, K. Wang, K. Fluri,
K. Seiler, B. Rusterholz, G. Suter, M. Krüttli, U. E. Spichiger
and W. Simon, Anal. Chim. Acta, 1991, 255, 35–44;
(g) S. A. Glazier and M. A. Arnold, Anal. Chem., 1991, 63,
754–759; (h) S. Daunert, S. Wallace, A. Florido and
L. G. Bachas, Anal. Chem., 1991, 63, 1676–1679;
(i) J. K. Tsagatakis, N. A. Chaniotakis, K. Jurkschat,
S. Damoun, P. Geerlings, A. Bouhdid, M. Gielen,
I. Verbruggen, M. Biesemans, J. C. Martins and R. Willem,
Helv. Chim. Acta, 1999, 82, 531–542; ( j) I. Tsagkatakis,
N. Chaniotakis, R. Altmann, K. Jurkschat, R. Willem,
J. C. Martins, Y. Qin and E. Bakker, Helv. Chim. Acta, 2001,
84, 1952–1961; (k) J. K. Tsagatakis, N. A. Chaniotakis and
K. Jurkschat, Helv. Chim. Acta, 1994, 77, 2191–2196;
(l) N. A. Chaniotakis, K. Jurkschat and A. Rühlemann, Anal.
Chim. Acta, 1993, 282, 345–352; (m) D. Liu, W.-C. Chen,
R.-H. Yang, G.-L. Shen and R.-Q. Yu, Anal. Chim. Acta, 1997,
338, 209–214; (n) S. Chandra, A. Růžička, P. Švec and
H. Lang, Anal. Chim. Acta, 2006, 577, 91–97;
(o) K. Perdikaki, J. K. Tsagatakis and N. A. Chaniotakis,
Mikrochim. Acta, 2001, 136, 217–221; (p) K. Perdikaki,
I. Tsagkatakis, N. A. Chaniotakis, R. Altmann, K. Jurkschat
and G. Reeske, Anal. Chim. Acta, 2002, 467, 197–204;
(q) N. A. Chaniotakis, K. Jurkschat, G. Reeske and
A. Volosirakis, Anal. Chim. Acta, 2005, 553, 185–189.
Acknowledgements
For financial support of this work, we acknowledge the U.S.
Department of Energy through the LANL LDRD Program and
the LANL G. T. Seaborg Institute for Transactinium Science
(PD Fellowship to A.G.L.), the Advanced Fuels Campaign Fuel
Cycle Research & Development Program (A.G.L., A.T.N.), and
the Office of Basic Energy Sciences, Heavy Element Chemistry
program (J.L.K., B.L.S., materials & supplies). Los Alamos
National Laboratory is operated by Los Alamos National Secur-
ity, LLC, for the National Nuclear Security Administration of
U.S. Department of Energy (contract DE-AC52-06NA25396).
Notes and references
1 (a) A. J. Kuthubtheen, R. Wickneswari and V. G. K. Das,
Appl. Organomet. Chem., 1989, 3, 231–242; (b) N. W. Ahmad,
S.-A. Mohd, S. Balabaskaran and V. G. K. Das, Appl. Organo-
met. Chem., 1993, 7, 583–591; (c) A. K. Saxena, Appl. Organo-
met. Chem., 1987, 1, 39–56; (d) A. J. Crowe, Appl. Organomet.
Chem., 1987, 1, 143–155; (e) A. J. Crowe, Appl. Organomet.
Chem., 1987, 1, 331–346; (f) S. Nicklin and M. W. Robson,
Appl. Organomet. Chem., 1988, 2, 487–508; (g) P. N. Saxena
and A. J. Crowe, Appl. Organomet. Chem., 1988, 2, 185–187;
(h) J. S. White, J. M. Tobin and J. J. Cooney,
Can. J. Microbiol., 1999, 45, 541–554; (i) M. Kemmer,
H. Dalil, M. Biesemans, J. C. Martins, B. Mahieu, E. Horn,
D. de Vos, E. R. T. Tiekink, R. Willem and M. Gielen,
J. Organomet. Chem., 2000, 608, 63–70; ( j) M. Gielen, Appl.
Organomet. Chem., 2002, 16, 481–494; (k) Y. Zhou, T. Jiang,
S. Ren, J. Yu and Z. Xia, J. Organomet. Chem., 2005, 690,
3 (a) B. Scott, M. Pressprich, R. D. Willet and D. A. Cleary,
J. Solid State Chem., 1992, 96, 294–300; (b) X. Bourdon and
V. B. Cajipe, J. Solid State Chem., 1998, 141, 290–293;
(c) D. A. Cleary, R. D. Willett, F. Ghebremichael and
M. G. Kuzyk, Solid State Commun., 1993, 88, 39–41;
(d) C. Lamberth, J. C. Machell, D. M. P. Mingos and
T. L. Stolberg, J. Mater. Chem., 1991, 1, 775–780;
(e) M. Lequan, C. Branger, J. Simon, T. Thami,
E. Chauchard and A. Persoons, Adv. Mater., 1994, 6, 851–
853; (f) H. Reyes, C. García, N. Farfán, R. Santillan,
P. G. Lacroix, C. Lepetit and K. Nakatani, J. Organomet.
Chem., 2004, 689, 2303–2310; (g) W. Guan, G. Yang, L. Yan
and Z. Su, Inorg. Chem., 2006, 45, 7864–7868; (h) C. Fiorini,
J. M. Nunzi, P. Raimond, C. Branger, M. Lequan and
R. M. Lequan, Synth. Met., 2000, 115, 127–131;
(i) C. Fiorini, F. Charra, J.-M. Nunzi and P. Raimond, J. Opt.
This journal is © The Royal Society of Chemistry 2015
Dalton Trans.