ORGANIC
LETTERS
2011
Vol. 13, No. 9
2240–2243
1,8-PyrenyleneꢀEthynylene Macrocycles
Gandikota Venkataramana, Prateek Dongare, Louise N. Dawe, David W. Thompson,
Yuming Zhao, and Graham J. Bodwell*
Department of Chemistry, Memorial University, St. John’s, NL, A1B 3X7, Canada
Received February 22, 2011
ABSTRACT
A concise, highly regioselective synthesis of 1,8-dibromo-4,5-dialkoxypyrenes has been developed and exploited in the synthesis of some 1,8-
1
pyrenyleneꢀethynylene macrocycles. The H NMR data and NICS calculations indicate that there is little or no macrocyclic ring current.
Concentration-dependent UVꢀvisible studies indicate no aggregation at low concentration, but 8b forms dimers with voids suitable for
intercalation of small molecules in the solid state.
Aryleneꢀethynylene macrocycles constitute one of the
most important classes of shape-persistent macrocycles.1
Such systems have attracted interest for a variety of
reasons, including their structural, optoelectronic, self-
assembly, and liquid crystalline properties. Among the
many known aryleneꢀethynylene macrocycles, benzene
is by far the most commonly employed aromatic building
block. Other small aromatic and heteroaromatic systems
have also been used quite often, e.g. thiophene, pyridine,
and naphthalene, but larger aromatic systems,2 which have
larger surfaces and more interesting optoelectronic proper-
ties, have been exploited far less often.
Pyrene (1), the smallest peri condensed polynuclear
benzenoid aromatic hydrocarbon, has not previously been
incorporated into an aryleneꢀethynylene macrocycle.
Doing so would require access to synthetically useful
quantities of appropriately disubstituted pyrenes, but this
is nontrivial. For example, electrophilic dihalogenation of
pyrene (1) is not only limited in the disubstitution patterns
it can deliver (1,3-, 1,6-, and 1,8-)3 but also poorly selective
in the ones it provides. Moreover, the resulting isomer
mixtures require painstaking separation. We now report a
short and completely regioselective synthesis of 1,8-dibromo-
4,5-dialkoxypyrenes 5aꢀc and their use as building blocks
for the construction of some 1,8-pyrenyleneꢀethynylene
macrocycles.
The conceptual basis of this work was the premise
that substituents at the 4 and 5 positions of pyrene
(1) would sterically hinder the 3 and 6 positions, there-
by enabling regioselective substitution at the 1 and 8
positions. Alkoxy groups were selected because they
were expected to both activate the pyrene system to-
ward electrophilic substitution and effectively hinder
the 3 and 6 positions.
(1) (a) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45,
4416–4439. (b) Zhao, D.; Moore, J. S. Chem. Commun. 2003, 807–818.
(c) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003,
€
2355–2369. (d) Grave, C.; Schluter, A. D. Eur. J. Org. Chem. 2002, 3075–
3098.
(2) Carbazole: (a) Zhao, T.; Liu, Z.; Song, Y.; Xu, W.; Zhang, D.;
Zhu, D. J. Org. Chem. 2006, 71, 7422–7432. Phenanthrene: Morimoto,
M.; Akiyama, S.; Misumi, S.; Nakagawa, M. Bull. Chem. Soc. Jpn. 1962,
35, 857–859. Anthracene: Chen, S.; Yan, Q.; Li, T.; Zhao, D. Org. Lett.
2010, 12, 4784–4787. 1,10-Phenanthroline: Schmittel, M.; Ammon, H.
Synlett 1999, 750–752. [4]Helicene: Nakamura, K.; Okubo, H.;
Yamaguchi, M. Org. Lett. 2001, 3, 1097–1099. 10b,10c-Dimethyl-
10b,10c-dihydropyrene: Kimball, D. B.; Haley, M. M.; Mitchell,
R. H.; Ward, T. R. Org. Lett. 2001, 3, 1709–1711. Triphenylene: Takeda,
T.; Fix, A. G.; Haley, M. M. Org. Lett. 2010, 12, 3824–3827. Porphyrin:
Yu, L.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7402–7419. Dibenzo[e,
€
l]pyrene: Hoger, S.; Cheng, X. H.; Ramminger, A.-D.; Enkelmann, V.;
Rapp, A.; Mondeshki, M.; Schnell, I. Angew. Chem., Int. Ed. 2005, 44,
2801–2805. Dithieno[3,2-a;2,3-c]naphthalene: Chen, T.; Pan, G.-B.;
€
Wettach, H.; Fritzsche, M.; Hoger, S.; Wan, L.-J.; Yang, H.-B.; North-
rop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2010, 132, 1328–1333.
Dibenz[a,j]anthracene: Chan, J. M. W.; Tischler, J. R.; Kooi, S. E.;
Bulovic, V.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 5659–5666.
BODIPY: Sakida, T.; Yamaguchi, S.; Shinokubo, H. Angew. Chem., Int.
Ed. 2011, 50, 2280–2283. A larger PAH: Liu, W.-J.; Zhou, Y.; Zhou, Q.-
F.; Ma, Y.; Pei, J. Org. Lett. 2008, 10, 2123–2126. Only one reference per
aromatic system is given here. A more complete list appears in the
Supporting Information.
(3) (a) Minabe, M.; Takeshige, S.; Soeda, Y.; Kimura, T.; Tsubota,
M. Bull. Chem. Soc. Jpn. 1994, 67, 172–179. (b) Grimshaw, J.; Trocha-
Grimshaw, J. J. Chem. Soc., Perkin Trans. 1 1972, 1622–1623.
r
10.1021/ol200485x
Published on Web 03/29/2011
2011 American Chemical Society