572
S. Ortial et al.
LETTER
(18) (a) Chaume, G.; Feytens, D.; Chassaing, G.; Lavielle, S.;
Acknowledgment
Brigaud, T.; Miclet, E. New J. Chem. 2013, 37, 1336.
(b) Chaume, G.; Simon, J.; Caupène, C.; Lensen, N.; Miclet,
E.; Brigaud, T. J. Org. Chem. 2013, 78, 10144.
We thank Marion Jean for chiral HPLC separations (ISM2-UMR
7313, Aix-Marseille Université).
(19) Khangarot, R. K.; Kaliappan, K. P. Eur. J. Org. Chem. 2013,
13, 2692.
(20) Kondratov, I. S.; Dolovanyuk, V. G.; Tolmachova, N. A.;
Gerus, I. I.; Bergander, K.; Fröhlich, R.; Haufe, G. Org.
Biomol. Chem. 2012, 10, 8778.
(21) Padrón, J. M.; Kokotos, G.; Martín, T.; Markidis, T.;
Gibbons, W. A.; Martín, V. S. Tetrahedron: Asymmetry
1998, 9, 3381.
(22) Wiedemann, J.; Heiner, T.; Mloston, G.; Prakash, G. K. S.;
Olah, G. A. Angew. Chem. Int. Ed. 1998, 37, 820.
(23) The level of drying of all reagents and solvents required for
this reaction might be the cause of the capricious nature of
this transformation as discussed by the authors (Note:
commercially available 1 M solution of TBAF in THF
usually contains 5% of H2O).
Supporting Information for this article is available online at
1
detailed experimental procedures and H NMR, 13C NMR, 19F
NMR and HRMS data.SuInpooigf
m
iortnartSuIonpgmoritrifato
n
References and Notes
(1) Present address: Calyx Chemicals & Pharmaceuticals Ltd,
A-37/38, MIDC, Dombivli East, Dist. Thane 421 203,
Maharashtra, India.
(2) (a) Kowalczyk, V.; Prahl, A.; Derdowska, I.; Dawidowska,
O.; Slaninovà, J.; Lammek, B. J. Med. Chem. 2004, 47,
6020. (b) Brackmann, F.; De Meijere, A. Chem. Rev. 2007,
107, 4493. (c) Fülöp, F.; Martinek, T. A.; Toth, G. K. Chem.
Soc. Rev. 2006, 35, 323.
(24) Adamczyk, M.; Johnson, D. D.; Reddy, R. E. Tetrahedron:
Asymmetry 1999, 10, 775.
(3) (a) Yaron, A.; Naider, F.; Scharpe, S. Crit. Rev. Biochem.
Mol. Bio. 1993, 28, 31. (b) Vanhoof, G.; Goossens, F.; De
Meester, I.; Hendriks, D.; Scharpé, S. FASEB J. 1995, 9,
736. (c) Cai, M.; Cai, C.; Mayorov, A. V.; Xiong, C.;
Cabello, C. M.; Soloshonok, V. A.; Swift, J. R.; Trivedi, D.;
Hruby, V. J. J. Peptide Res. 2004, 63, 116.
(4) (a) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.; Ye,
S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135; and
references therein. (b) Qiu, X.-L.; Qing, F.-L. Eur. J. Org.
Chem. 2011, 3261; and references therein. (c) Yoder, N. C.;
Kumar, K. Chem. Soc. Rev. 2002, 31, 335. (d) Aceña, J. L.;
Sorochinsky, A. E.; Soloshonok, V. A. Synthesis 2012, 44,
1591. (e) Aceña, J. L.; Sorochinsky, A. E.; Moriwaki, H.;
Sato, T.; Soloshonok, V. A. J. Fluorine Chem. 2013, 155,
21. (f) Sorochinsky, A. E.; Soloshonok, V. A. J. Fluorine
Chem. 2010, 131, 127.
(25) Ilies, M.; Dowling, D. P.; Lombardi, P. M.; Christianson, D.
W. Bioorg. Med. Chem. Lett. 2011, 21, 5854.
(26) Bodanszky, M.; Bodanszky, A. In The Practice of Peptide
Synthesis; Springer Verlag: Berlin, 1984, 177.
(27) Experimental Procedure for 6:
Using 4 M HCl–1 M NaOH: Compound 5 (1.2 mmol, 1
equiv) was dissolved in THF (10 mL) and a THF–12 M HCl
mixture (11 mL/9 mL) was added dropwise and the solution
was stirred at r.t. for 30 min. After concentration in vacuo,
MeOH (2.4 mL) and 1 M NaOH (3.36 mL) were added to the
crude product. The solution was stirred at r.t. for 2 h and
concentrated in vacuo. Purification over Dowex 50WX8,
eluting with H2O then 5% aq NH3 followed by purification
over RP 18 silica gel, eluting with H2O afforded the imine 6
as an off-white solid after complete removal of the H2O
(0.15 g, 0.83 mmol, 69%).
(5) (a) Soloshonok, V. A. Fluorine-Containing Synthons,
Oxford University Press, 2005. (b) Ojima, I. Fluorine in
Medicinal Chemistry and Chemical Biology; Blackwell
Publishing, Ltd: Chichester, 2009. (c) Mikami, K.; Fustero,
S.; Sanchez-Rosello, M.; Aceña, J. L.; Soloshonok, V.;
Sorochinsky, A. Synthesis 2011, 3045.
(6) Chaume, G.; Van Severen, M.-C.; Marinkovic, S.; Brigaud,
T. Org. Lett. 2006, 8, 6123.
(7) Caupène, C.; Chaume, G.; Ricard, L.; Brigaud, T. Org. Lett.
2009, 11, 209.
(8) Chaume, G.; Lensen, N.; Caupène, C.; Brigaud, T. Eur. J.
Org. Chem. 2009, 5717.
(9) Jlalia, I.; Lensen, N.; Chaume, G.; Dzhambazova, E.;
Astasidi, L.; Hadjiolova, R.; Bocheva, A.; Brigaud, T. Eur.
J. Med. Chem. 2013, 62, 122.
(10) Gulevich, A. V.; Shevchenko, N. E.; Balenkova, E. S.;
Röschenthaler, G.-V.; Nenajdenko, V. G. Synlett 2009, 403.
(11) Li, Q.; Ding, C.-H.; Li, X.-H.; Weissensteiner, W.; Hou, X.-
L. Synthesis 2012, 44, 265.
(12) Li, G.-H.; Tong, M.-C.; Li, J.; Tao, H.-Y.; Wang, C.-J.
Chem. Commun. 2011, 47, 11110.
(13) Li, Q.-H.; Xue, Z.-Y.; Tao, H.-Y.; Wang, C.-J. Tetrahedron
Lett. 2012, 53, 3650.
(14) Qiu, X.-L.; Qing, F.-L. J. Chem. Soc., Perkin Trans. 1 2002,
2052.
(15) Qiu, X.-L.; Qing, F.-L. J. Org. Chem. 2002, 67, 7162.
(16) Del Valle, J. R.; Goodman, M. Angew. Chem. Int. Ed. 2002,
41, 1600.
(17) Chaume, G.; Barbeau, O.; Lesot, P.; Brigaud, T. J. Org.
Chem. 2010, 75, 4135.
Using 6 M HCl: Compound 5 (0.84 mmol, 1 equiv) was
dissolved in 6 M HCl (3.5 mL). The solution was heated at
60 °C until reaction was complete (24 h) and the brown
mixture then washed with Et2O (2 ×) and concentrated in
vacuo. Purification following the procedure previously
described afforded 6 in 59% yield (0.09 g, 0.50 mmol). 1H
NMR (300 MHz, DMSO-d6): δ = 4.62 (m, 1 H), 2.76 (m, 2
H), 2.13 (m, 2 H). 13C NMR (75.45 MHz, DMSO-d6): δ =
173.3 (C), 164.3 (q, JCCF = 34.8 Hz, C), 120.5 (q, JCF = 273
Hz, C), 77.9 (CH), 33.5, 27.0 (CH2). 19F NMR (282.4 MHz,
DMSO-d6): δ = −68.8 (d, JHF = 2.8 Hz). [α]D20 6.1 (c = 1.0,
DMSO). HRMS (ESI−): m/z [M − H]− calcd for C6H5NO2F3:
180.0272; found: 180.0273.
(28) (a) Yasumoto, M.; Ueki, H.; Soloshonok, V. A. J. Fluorine
Chem. 2007, 128, 736. (b) Soloshonok, V. A.; Yasumoto, M.
J. Fluorine Chem. 2006, 127, 889. (c) Ono, T.; Kukhar, V.
P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563.
(29) Experimental Procedure for 7: The cyclic imine 6 (0.27
mmol, 1 equiv) was dissolved in anhyd DMF (2 mL) and
Pd/C was (10−15 wt%) added. The solution was degassed at
−78 °C for 5 min and the flask was filled with H2. After 16 h
at r.t., the reaction was complete. The solution was filtered
over a pad of Celite® and concentrated under high vacuum.
Purification over RP 18 silica gel eluting with H2O
containing a few drops of 12 M HCl afforded 5-Tfm-Pro as
its hydrochloride salt (0.061 g, 0.27 mmol, 100%). 1H NMR
(300 MHz, D2O): δ = 4.41 (m, 2 H), 2.05−2.42 (m, 4 H). 13
C
NMR (75.45 MHz, D2O): δ = 171.2 (C), 123.0 (q, JCF = 278
Hz, C), 61.5 (CH), 59.5 (q, JCCF = 33.7 Hz, C), 27.1, 23.7
(CH2). 19F NMR (282.4 MHz, D2O): δ = −72.3 (d, JHF = 7.06
Synlett 2014, 25, 569–573
© Georg Thieme Verlag Stuttgart · New York