1
96
S.O. Bahaffi et al. / Journal of Molecular Structure 1020 (2012) 188–196
donor groups. Furthermore, the chelation increases the delocaliza-
tion of -electrons over the whole chelate ring and enhances the
(2010) 1421;
(
(
(
c) Z. Liu, B. Wang, B. Li, Q. Wang, Z. Yang, T. Li, Y. Li, Eur. J. Med. Chem. 45
2010) 5353;
d) D. Sadhukhan, A. Ray, S. Das, C. Rizzoli, G.M. Rosair, S. Mitra, J. Mol. Struct.
p
lipophilicity of the complexes. This increase in lipophilicity en-
hances the penetration of the complexes into lipid membranes,
and blocks the metal binding sites of the enzymes of the microor-
ganism. Metal complexes also disturb the respiration process of the
cell and thus block the synthesis of the proteins that restricts fur-
ther growth of the organism. Generally, the electronic nature (elec-
tron withdrawing and electron releasing) and position of
substituents of the phenyl ring dictates the antimicrobial activities.
The inhibitory action gets enhanced with the introduction of elec-
tron-withdrawing chloro groups in the phenyl ring, whereas, elec-
tron-releasing substituents such as methyl groups are less active
compared to un-substituted phenyl ring [54].
975 (2010) 265;
(
(
e) D. Qin, Z. Yang, F. Zhang, B. Du, P. Wang, T. Li, Inorg. Chem. Commun. 13
2010) 727.
[
16] (a) P. Sathyadevi, P. Krishnamoorthy, E. Jayanthi, R.R. Butorac, A.H. Cowley, N.
Dharmaraj, Inorg. Chim. Acta 384 (2012) 83;
(
(
(
b) B. Jing, L. Li, J. Dong, J. Li, T. Xu, Transition Met. Chem. 36 (2011) 565;
c) N. Raman, A. Selvan, S. Sudharsan, Spectrochim. Acta A 79 (2011) 873;
d) F. Arjmand, F. Sayeed, M. Muddassir, J. Photochem. Photobiol.B 103 (2011)
166;
f) X. Qiao, Z. Ma, C. Xie, F. Xue, Y. Zhang, J. Xu, Z. Qiang, J. Lou, G. Chen, S. Yan, J.
Inorg. Biochem. 105 (2011) 728;
i) M. Shakir, M. Azam, M.F. Ullah, S.M. Hadi, J. Photochem. Photobiol. B 104
(2011) 449;
g) P.R. Reddy, A. Shilpa, N. Raju, P. Raghavaiah, J. Inorg. Biochem. 105 (2011)
603;
k) J. Dong, L. Li, G. Liu, T. Xu, D. Wang, J. Mol. Struct. 986 (2011) 57;
(
(
(
1
(
4
. Conclusion
(l) D. Sabolová, M. Ko zˇ urkova, T. Plichtá, Z. Ondrušová, D. Hudecová, M.
Šimkovi cˇ , H. Paulíková, A. Valent, Int. J. Biol. Macromol. 48 (2011) 319;
(
m) K.M. Vyas, R.G. Joshi, R.N. Jadeja, C.R. Prabha, V.K. Gupta, Spectrochim. Acta
Four mononuclear copper(II) complexes have been synthesized
A 84 (2011) 256.
by direct thermal reaction between Cu(OAc)
neutral N
vanillin)4,5-dimethy-l,2-phenylenediamine (H
aldehyde)4,5-dimethyl-1,2-phenylenediamine (H
2
ꢂH
2
O and symmetrical
[17] A. Pal, B. Biswas, S.K. Mondal, C. Lin, R. Ghosh, Polyhedron 31 (2012) 671.
[18] A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London,
1968.
0
2
O
2
donor tetradentate Schiff bases namely: N,N bis(o-
1
0
2
L ), N,N bis(salicyl-
[
19] D.T. Sawyer, W.R. Heineman, J.M. Beebe, Chemistry Experiments for
Instrumental Methods, John Wiley & Sons, New York, 1984.
2
0
2
L ), N,N bis(o-
3
0
[
20] C.V. Kumar, E.H. Asuncion, J. Am. Chem. Soc. 115 (1993) 8547.
2
vanillin)4,5-dichloro-1,2-phenylenediamine (H L ) and N,N bis(sal-
4
[21] J. Marmur, J. Mol. Biol. 3 (1961) 208.
22] A.A. Abdel Aziz, Synth. React. Inorg. Met-Org. Chem. 41 (2011) 384.
icylaldehyde)4,5-dichloro-1,2-phenylenediamine (H
2
L ), respec-
[
tively. The new complexes were fully characterized by
physicochemical and spectroscopic methods. Characterizations of
the new complexes have shown that, Cu(II) formed square planar
complexes with 1:1 (metal:ligand) stoichiometry. The study of
the interaction of complexes with CT-DNA was investigated by
absorption spectrophotometry, fluorescence quenching and viscos-
ity measurements. From the binding studies, it was evident that
[23] A. Wolf, G.H. Shimer Jr., T. Meehan, Biochemistry 26 (1987) 6392.
[24] W.E. Marsh, W.E. Hatfeild, D.J. Hodson, Inorg. Chem. 21 (1982) 2679.
[
[
[
25] J.B. Chaires, N. Dattaguota, D.M. Crothers, Biochemistry 21 (1982) 3927.
26] S. Satyanaryana, J.C. Dabrowial, J.B. Chaires, Biochemistry 32 (1993) 2573.
27] M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 8901.
[28] J.A. Dean, Lange’s Hand Book of Chemistry, fourth ed., Springer, Berlin, 1992.
[
[
29] S. Zolezzi, A. Decinti, E. Spodine, Polyhedron 18 (1999) 897.
30] P.E. Aranha, M.P. dos Santos, S. Romera, E.R. Dockal, Polyhedron 26 (2007)
1373.
1
2
3
4
[
CuL ] > [CuL ] > [CuL ] > [CuL ] according to CT-DNA binding abil-
[31] M. Odaba sß o g˘ lu, J. Mol. Struct. 840 (2007) 71.
[
[
32] J.E. Kovacic, Spectrochim. Acta A 23 (1967) 183.
33] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., Wiley-Interscience, New York, 1997.
ity. Furthermore the novel complexes exhibited good antibacterial
activity against the bacteria strains S. aureus, S. epidermidis, E. coli,
and P. aeruginosai in compression with the standard drugs strepto-
mycin and amoxycillin.
[34] L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapmann and Hall,
London, 1973.
[
35] F.A. Cotton, C.W. Wilkinson, Advanced Inorganic Chemistry, third ed.,
Interscience Publisher, New York, 1972.
References
[36] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984.
[
[
[
37] B.J. Hathaway, A.A.G. Tomlinson, Coord. Chem. Rev. 5 (1970) 1.
38] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1961) 149.
39] C.J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York,
[
1] A.E. Friedman, C.V. Kummar, N.J. Turro, J.K. Baatron, Nucleic Acids Res. 19
1991) 2595.
2] A.M. Pyle, T. Morii, J.K. Barton, J. Am. Chem. Soc. 112 (1990) 9432.
(
[
[
1962.
3] J.K. Barton, J.M. Goldberg, C.V. Kumar, N.J. Turro, J. Am. Chem. Soc. 108 (1986)
[
[
[
[
[
[
[
[
40] J.P. Klinman, Chem. Rev. 96 (1996) 2541.
41] F.K. Kneubühl, J. Chem. Phys. 33 (1960) 1074.
2
081.
[
[
4] Q. Zhang, J. Liu, H. Chao, G. Xue, L. Ji, J. Inorg. Biochem. 83 (2001) 49.
5] X.B. Yang, Y. Huang, J. Zhang, S.K. Yuan, R.Q. Zeng, Inorg. Chem. Commun. 13
42] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143.
43] P.U. Maheswari, M. Palaniandavar, Inorg. Chim. Acta 357 (2004) 901.
44] S.D. Wettig, D.O. Wood, J.S. Lee, J. Inorg. Biochem. 94 (2003) 94.
45] J.K. Barton, A.T. Danishefsky, J.M. Goldberg, J. Am. Chem. Soc. 106 (1984) 2172.
46] S.A. Tysoe, A.D. Baker, T.C. Strekees, J. Phys. Chem. 97 (1993) 1707.
47] R. Indumathy, S. Radhika, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg.
Biochem. 101 (2007) 434.
48] T. Biver, F. Secco, M.R. Tinè, M. Venturini, J. Inorg. Biochem. 98 (2004) 33.
49] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31 (1992) 9319.
50] V.G. Vaidyanathan, B.U. Nair, J. Inorg. Biochem. 93 (2003) 271.
51] J.B. Lepecq, C.J. Paoletti, Mol. Biol. 27 (1967) 87.
52] C.E. Overton, Studien uber die Narkose zugleich ein Beitrag zur allgemeinen
Pharmakologie, Jena, Switzerland, Gustav Fischer, 1901.
53] B.G. Tweedy, Phytopathalogy 55 (1964) 910.
54] R. Tokuyama, Y. Takahashi, Y. Tomita, M. Tsubouchi, T. Yoshida, N. Iwasaki, N.
Kado, E. Okezaki, O. Nagata, Chem. Pharm. Bull. 49 (2001) 353.
(
2010) 1421.
[
[
[
6] S. Anbu, M. Kandaswamy, Polyhedron 30 (2011) 123.
7] J. Sun, S. Wu, H.Y. Chen, F. Gao, J. Liu, L.N. Ji, Z. Mao, Polyhedron 30 (2011) 1953.
8] D.K. Kenneth, S. Itoh, S. Rokita, Copper–Oxygen Chemistry, John Wiley & Sons,
United Kingdom, 2010.
9] A. Sigel, H. Sigel, Metal Ions in Biological System, vol. 33, Marcel Dekker, New
York, 1996.
[
[
[
[
[
[
[
[
[
[
[
10] G.L. Anderson, J. Williams, R. Hille, J. Biol. Chem. 267 (1992) 23674.
11] K. Sato, T. Kohzuma, C.J. Dennison, J. Am. Chem. Soc. 125 (2003) 2101.
12] P.S. Suresh, A. Kumar, R. Kumar, V.P. Singh, J. Mol. Graph. Mode. 26 (2008) 845.
13] E. Jaenicke, H. Decker, Biochem. J. 371 (2003) 515.
14] P.D. Boyer, H. Lardy, K. Myrback (Eds.), The Enzymes, vol. 8, second ed.,
Academic Press, New York, 1963.
[
[
[
15] (a) X. Zhang, Y. Wang, Q. Zhang, Z. Yang, Spectrochim. Acta A 77 (2010) 1;
(
b) X. Yang, Y. Huang, J. Zhang, S. Yuan, R. Zeng, Inorg. Chem. Commun. 13