Journal of the American Chemical Society
ARTICLE
the amplification of weak bands. This has afforded us the opportunity
to observe and compare H2 overtones in the ∼8000 cmÀ1 region.
To directly compare the red shifts of the overtone bands with
those of the corresponding fundamentals of H2 in the different
materials, we have prepared the reduced plots shown in Figure 5.
Only data for the Mg2L, Mn2L, and Zn2L are presented, as the
overtone bands from H2 in Ni2L were too weak to be observed
and Co2L has a strong framework absorption in this region. The
frequency shifts, summarized in Table 1, are in good agreement
with predictions from the Buckingham model, indicating that any
induced anharmonicity is minor. The overtone modes of H2 at the
primary site are remarkably intense, with integrated areas ranging
from 10% to 20% of that of the fundamental. This is significantly
higher than the 3% ratio observed for H2 in zeolites using the
transmission geometry.54 Interestingly, we did not detect overtone
bands arising from H2 at any secondary sites. While overtone
enhancement appears to be limited to the primary sites, it occurs
for all of the M2L materials, and it is even stronger for the HD and
D2 isotopologues. We are presently working on a theoretical
model to explain this large increase in the overtone intensity.
’ ACKNOWLEDGMENT
This work was partially funded by the American Chemical
Society Petroleum Research Fund and the Oberlin Department
of Chemistry and Biochemistry.
’ REFERENCES
(1) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour,
J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.
(2) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.;
Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876.
(3) Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007,
17, 3197.
(4) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
(5) Ma, S. Q.; Eckert, J.; Forster, P. M.; Yoon, J. W.; Hwang, Y. K.;
Chang, J. S.; Collier, C. D.; Parise, J. B.; Zhou, H. C. J. Am. Chem. Soc.
2008, 130, 15896.
(6) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.;
Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.;
Hubberstey, P.; Champness, N. R.; Schroder, M. J. Am. Chem. Soc. 2009,
131, 2159.
(7) Koh, K.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2009,
131, 4184.
(8) Sumida, K.; Hill, M. R.; Horike, S.; Dailly, A.; Long, J. R. J. Am.
Chem. Soc. 2009, 131, 15120.
(9) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.;
Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Science
2010, 329, 424.
(10) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688.
(11) Areꢀan, C. O.; Chavan, S.; Cabello, C. P.; Garrone, E.; Palomino,
G. T. ChemPhysChem 2010, 11, 3237.
5. SUMMARY
We have determined that for adsorbed hydrogen within the
M2L series the most highly red-shifted vibrational features arise
from isolated H2 molecules at the primary site associated with the
coordinatively unsaturated metals and not from a proposed
H2 H2 pairing mechanism.35 We have presented further
3 3 3
evidence that the magnitudes of these red shifts correlate with
the adsorption enthalpies of the sites. As expected, the secondary
sites, which become occupied only after the primary site is filled,
give rise to IR features that are largely insensitive to metal
substitution. Frequency shifts revealed by isotopologue substitu-
tion spectra (HD and D2) and overtone spectra show good
agreement with the Buckingham model predictions.48 From this
we can conclude that interactions with the primary site cause only
minor changes to the H2 anharmonicity. This is an important
consideration for accurately modeling the interactions at each
adsorption site. Finally, we observed small, but distinct, changes
in the primary site IR bands after population of the secondary
(12) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mater. 2010,
132, 300.
(13) Stephanie-Victoire, F.; Goulay, A. M.; de Lara, E. C. Langmuir
1998, 14, 7255.
(14) Dinca, M.; Long, J. R. Angew. Chem., Int. Ed. 2008, 47, 6766.
(15) Zavorotynska, O.; Vitillo, J. G.; Spoto, G.; Zecchina, A. Int. J.
Hydrogen Energy 2011, 36, 7944.
(16) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.;
Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504.
(17) Dietzel, P. D. C.; Johnsen, R. E.; Blom, R.; Fjellvag, H. Chem.—
Eur. J. 2008, 14, 2389.
(18) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc.
2008, 130, 10870.
sites. We attribute this behavior to weak H2 H2 interactions;
3 3 3
however, the magnitude of the effect is much smaller than re-
cently published theoretical predictions.35 We hope this work
resolves some of the uncertainties surrounding this system and
inspires the development of an improved theoretical model to
describe H2 adsorption in future materials, be they established
materials with known structures or hypothetical candidates.
(19) Dietzel, P. D. C.; Blom, R.; Fjellvag, H. Eur. J. Inorg. Chem.
2008, 3624.
(20) Zhou, W.; Wu, H.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 15268.
(21) Bhattacharjee, S.; Choi, J. S.; Yang, S. T.; Choi, S. B.; Kim, J.;
Ahn, W. S. J. Nanosci. Nanotechnol. 2010, 10, 135.
(22) Dietzel, P. D. C.; Morita, Y.; Blom, R.; Fjellvag, H. Angew.
Chem., Int. Ed. 2005, 44, 6354.
(23) Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvag,
H. Chem. Commun. 2006, 959.
(24) Vitillo, J. G.; Regli, L.; Chavan, S.; Ricchiardi, G.; Spoto, G.;
Dietzel, P. D. C.; Bordiga, S.; Zecchina, A. J. Am. Chem. Soc. 2008, 130, 8386.
(25) Kazansky, V. B.; Borovkov, V. Y.; Karge, H. G. J. Chem. Soc.,
Faraday Trans. 1997, 93, 1843.
’ ASSOCIATED CONTENT
S
SupportingInformation. Powder X-ray diffraction patterns
b
of the samples; results of thermogravimetric analyses; mid-IR
spectra of the desolvated samples; table of characteristic IR absorp-
tion frequencies for each sample; mid-IR spectra of rehydrated
Zn2L; hydrogen adsorption isotherms; diffuse reflectance IR spectra
of H2 in Co2L at room temperature; diffuse reflectance IR spectra
of H2, HD, and D2 in the samples. This material is available free
(26) Kazansky, V. B.; Jentoft, F. C.; Karge, H. G. J. Chem. Soc.,
Faraday Trans. 1998, 94, 1347.
(27) Borovkov, V. Y.; Serykh, A. I.; Kazansky, V. B. Kinet. Catal.
2000, 41, 787.
(28) Bordiga, S.; Vitillo, J. G.; Ricchiardi, G.; Regli, L.; Cocina, D.;
Zecchina, A.; Arstad, B.; Bjorgen, M.; Hafizovic, J.; Lillerud, K. P. J. Phys.
Chem. B 2005, 109, 18237.
(29) FitzGerald, S. A.; Churchill, H. O. H.; Korngut, P. M.; Simmons,
C. B.; Strangas, Y. E. Phys. Rev. B 2006, 73, 155409.
’ AUTHOR INFORMATION
Corresponding Author
stephen.fitzgerald@oberlin.edu; jesse.rowsell@oberlin.edu
20317
dx.doi.org/10.1021/ja2071384 |J. Am. Chem. Soc. 2011, 133, 20310–20318