BULLETIN OF THE
Note
KOREAN CHEMICAL SOCIETY
13
and
C
NMR of dimethyl 2,3-piperazinediacetate
X-Ray Crystallography. Single-crystal X-ray analysis
(
Figures S4 and S5), and HRMS of dimethyl 2,3-
was performed on a Siemens SMART platform diffractom-
eter outfitted with an Apex II area detector and monochro-
matized graphite Mo Kα radiation. The structure was
piperazinediacetate information (Figure S6).
2
solved by direct methods and refined on F by full-matrix
2
1
References
least-squares using SHELXTL. The hydrogen atoms in
the water molecule were located in difference Fourier maps.
Other hydrogen atoms in the piperazine-2,3-diacetate ligand
except for the C4 carbon atom connected to disordered car-
bon atoms (C2, C3) were generated geometrically and
allowed to ride on their respective parent atoms. All non-
hydrogen atoms were refined anisotropically. Crystallo-
graphic data for the structures reported here has been
deposited with CCDC (Deposition No. CCDC-1516055 for
1
2
3
. T. Kundu, S. C. Sahoo, R. Banerjee, CrystEngComm 2013,
1
5, 9634.
. D. Sarma, K. V. Ramanujachary, S. E. Lofland,
T. Magdaleno, S. Natarajan, Inorg. Chem. 2009, 48, 11660.
. R. Ganguly, B. Sreenivasulu, J. J. Vittal, Coord. Chem. Rev.
2008, 525, 1027.
4. H.-Y. An, E.-B. Wang, D.-R. Xiao, Y.-G. Li, Z.-M. Su,
L. Xu, Angew. Chem. 2006, 118, 918.
5
6
7
8
. L. Antolini, L. Menabue, G. C. Pellacani, G. Marcotrigiano,
Dalton Trans. 1982, 2541.
. E. V. Anokhina, A. J. Jacobson, J. Am. Chem. Soc. 2004,
2 Union Road, Cambridge CB2 1EZ, UK, E-mail:
deposit@ccdc.cam.ac.uk.
Isolation of the
Piperazinediacetate by Demetallation of Ni(Piperazine-
1
1
26, 3044.
. E. V. Anokhina, Y. B. Go, Y. Lee, T. Vogt, A. J. Jacobson,
J. Am. Chem. Soc. 2006, 128, 9957.
. Y. Zhang, M. K. Saha, I. Bernal, CrystEngComm 2003, 5, 34.
Ligand,
Dimethyl
2,3-
2
1
,3-Diacetate)(H O) (1).
A solution of complex
2
2
9. M. Mizutani, N. Maejima, K. Jitsukawa, H. Masuda,
H. Einaga, Inorg. Chim. Acta 1998, 283, 105.
(100 mg) in 2.0 M-HCl aqueous solution (10 mL) was
ꢀ
heated at 80 C for 1 h and then water was removed under
reduced pressure. The residue was dissolved in 10 mL of
10. X. Li, X.–. S. Xue, C. Liu, B. Wang, B.–. X. Tan, J.–. L. Jin,
Y.–. Y. Zhang, N. Dong, J.–. P. Cheng, Org. Biomol. Chem.
2012, 10, 413.
ꢀ
methanol and treated with 3 mL of acetyl chloride at 0 C.
1
1
1
1
1. Z.–. W. Ma, Y.–. X. Liu, P.–. L. Li, H. Ren, Y. Zhu,
J.–. C. Tao, Tetrahedron Asymmetry 2011, 22, 1740.
2. T. Miura, A. Masuda, M. Ina, K. Nakashima, S. Nishida,
N. Tada, A. Itoh, Tetrahedron Asymmetry 2011, 22, 1605.
3. X. Z. Liang, N. N. Quan, J. Wang, J. G. Yang, Sci. China,
Ser. B: Chem. 2009, 52, 874.
The mixture was stirred at room temperature for 1 h and
then poured into a saturated NaHCO solution. After the
3
aqueous layer was thoroughly extracted with methylene
chloride, the extracts were dried over anhydrous sodium
sulfate, filtered, evaporated to give 29 mg of product as
1
pale yellow oil in 38% yield. H NMR (CDCl 400 MHz)
3
,
4. For
a definition of “tailor-made amino acids”, see:
3
.70 (s, 6H, OCH ), 3.55–3.40 (m, 2H, NCH), 3.02–2.87
3
V. A. Soloshonok, C. Cai, V. J. Hruby, L. Van Meervelt, Tet-
rahedron 1999, 55, 12045.
(
m, 4H, NHCH ), 2.67–2.56 (m, 2H, CH CO ), 2.44–2.39
2 2 2
1
3
(m, 2H, CH CO ); C NMR (CDCl3, 100 MHz) 172.1
15. J. Do, Y. Lee, J. Kang, Y. S. Park, B. Lorenz, A. J. Jacobson,
Inorg. Chem. 2012, 51, 3533.
16. J. Do, J. Kang, Y. Lee, K. M. Ok, A. J. Jacobson, Inorg.
Chim. Acta 2015, 430, 280.
2
2
(
(
CO ), 56.1 (NCH), 51.9 (OCH ), 45.8 (NCH ), 36.9
2 3 2
+
CH CO ); HRMS: calcd. For C H N O [M + 1]
2
2
10 19 2 4
231.1345; found 231.1351.
1
1
1
2
7. P. S. Piispanen, P. M. Pihko, Tetrahedron Lett. 2005, 46,
751 and references therein.
8. A. G. Csaky, G. de la Herran, M. C. Murcia, Chem. Soc. Rev.
010, 39, 4080.
9. D. Enders, C. Wang, J. X. Liebich, Chem. Eur. J. 2009, 15,
0. A. P. Henderson, C. Bleasdale, K. Delaney, A. B. Lindstrom,
S. M. Rappaport, S. Waidyanatha, W. P. Watson,
B. T. Golding, Bioorg. Chem. 2005, 33, 363.
Acknowledgments. This work was supported by the
2
National Research Foundation of Korea Grant funded by
the Korean Government (NRF–2012R1A1A2005118). AJJ
thanks the R.A. Welch Foundation (Grant #E–0024) for
support of his work.
2
Supporting Information. Experimental powder X-ray
data and simulated powder X-ray patterns of 1 (Figure S1),
FT-IR (Figure S2), Powder X-ray data after TGA and simu-
1
lated powder X-ray patterns of NiO (Figure S3), H NMR
21. G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
Bull. Korean Chem. Soc. 2017
© 2017 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.bkcs.wiley-vch.de
4