Organic Process Research & Development 1998, 2, 393−399
A Practical Asymmetric Synthesis of the Antiviral Agent Lobucavir,
BMS-180194
Janak Singh,*,† Gregory S. Bisacchi,‡ Saleem Ahmad,‡ Jollie D. Godfrey, Jr.,† Thomas P. Kissick,† Toomas Mitt,‡
Octavian Kocy,‡ Truc Vu,† Chris G. Papaioannou,† Michael K. Wong,† James E. Heikes,† Robert Zahler,‡ and
Richard H. Mueller†
The Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 4000, Princeton, New Jersey 08543-4000
Abstract:
A practical synthesis of the antiviral agent lobucavir, [1R-
(1r,2â,3r)]-2-amino-9-[2,3-bis(hydroxymethyl)cyclobutyl]-6H-
purin-6-one (BMS-180194), is described. The key chiral inter-
mediate, [1S-(1r,2â,3r)]-3-hydroxy-1,2-cyclobutanedimethanol,
dibenzoate ester, was made by an asymmetric [2 + 2] cyclo-
addition of dimenthyl fumarate with ketene dimethyl acetal
followed by sequential diester reduction, benzoylation, deket-
alization, and stereoselective ketone reduction. Regioselective
N9-alkylation of the tetra-n-butylammonium salt of 2-amino-
6-iodopurine with the derived cyclobutyltriflate furnished the
purinecyclobutyl dibenzoate. Methanolysis followed by acid
hydrolysis produced lobucavir in a 35% overall yield with an
ee > 99%.
Figure 1. BMS 180194 (lobucavir).
Scheme 1
Introduction
Lobucavir, BMS-180194 (Figure 1),1-7 has potent activity
against a variety of herpes family viruses (herpes simplex
virus, human cyctomegalovirus, varicella-zoster virus), as
well as hepatitis B virus and human immunodeficiency virus.
Lobucavir presently is undergoing clinical trials, and we have
developed a practical synthesis to produce multikilogram
quantities of this potential medicinal agent as a single
enantiomer.
lengthy or use environmentally unfriendly reagents, e.g.,
dithioketene acetal or dinitrogen tetraoxide. In some cases,
the reactions are difficult to scale-up (e.g., ozonolysis,
photolysis). In Ichikawa’s group’s4 synthesis of lobucavir,
the key step is an asymmetric [2 + 2] cycloaddition of
thioketene dimethyl acetal with the fumarate ester 1a using
a chiral titanium catalyst (11% yield in 12 steps, Scheme
1). The asymmetric synthesis of lobucavir reported by Pariza
et al.5 employed dimenthyl fumarate 1b and thioketene
dimethyl acetal to produce cyclobutanone 3a in 27% overall
yield. Intermediate 3a was then converted to a cyclobuty-
lamine for the stepwise construction of the guanine moiety.
Cotterill and Roberts9 prepared mesylate 6 via a photochemi-
cal rearrangement of bicyclic epoxycyclobutanone 4 in 3%
overall yield over 11 steps (Scheme 2). Hsiao and Hannick10
obtained chiral cyclobutanone 3b from R,R-(+)-diethyl
tartrate via the key oxirane intermediate 7 in 32% overall
yield over 10 steps. The corresponding bis-(t-BuPh2Si) ether
Literature methods for the synthesis of substituted cyclo-
butanes are not suitable for the multikilogram scale prepara-
tion of lobucavir.1-13 The synthetic sequences are often
† Chemical Process Research
‡ Medicinal Chemistry Division
(1) (a) Slusarchyk, W. A.; Young, M. G.; Bisacchi, G. S.; Hockstein, D. R.;
Zahler, R. Tetrahedron Lett. 1989, 30, 6453. (b) Norbeck, D. W.; Kern, E.;
Hayashi, S.; Rosenbrook, W.; Sham, H.; Herrin, T.; Plattner, J. J.; Erickson,
J.; Clement, J.; Swanson, R.; Shipkowitz,, N.; Hardy, D.; Marsh, K.; Arnett,
G.; Shannon, W.; Broder, S.; Mitsuya, H. J. Med. Chem. 1990, 33, 1281.
(2) Bisacchi, G. S.; Braitman, A.; Cianci, C. W.; Clark, J. M.; Field, A. K.;
Hagen, M. E.; Hockstein, D. R.; Malley, M. F.; Mitt, T.; Slusarchyk, W.
A.; Sundeen, J. E.; Terry, B. J.; Toumari, A. V.; Weaver, E. R.; Young, M.
G.; Zahler, R. J. Med. Chem. 1991, 34, 1415 and cited references.
(3) Bisacchi, G. S.; Singh, J.; Godfrey, J. D., Jr.; Kissick, T. P.; Mitt, T.; Malley,
M. F.; Di Marco, J. D.; Gougoutas, J. Z.; Mueller, R. H.; Zahler, R. J. Org.
Chem. 1995, 60, 2902.
(4) Ichikawa, Y.-I.; Narita, A.; Shiozawa, A.; Hayashi, Y.; Narasaka, K. J. Chem.
Soc., Chem. Commun. 1989, 1919.
(5) Pariza, R. J.; Hannick, S. M.; Sowin, T. J.; Doherty, E. M. EP 452729
October 23, 1991.
(6) Ahmad, S. Tetrahedron Lett. 1991, 32, 6997 and references therein.
(7) Flaherty, J. F., Jr. Am. J. Health-Syst. Pharm. 1996, 53 (Suppl. 2), S4.
(8) (a) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, R.; Earl,
R. A.; Guedj, R. Tetrahedron 1994, 50, 10611 and references therein. (b)
Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571. (c) Huryn, D.
M.; Okabe, M. Chem. ReV. 1992, 92, 1745.
(9) Cotterill, I. C.; Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1992, 2585.
(10) (a) Hsiao, C.-N.; Hannick, S. M. Tetrahedron Lett. 1990, 31, 6609. (b)
Doering, W. von E.; Roth, H. D. Tetrahedron, 1970, 26, 2825-35. (c) For
an improved method of resolution of the Feist’s acid refer patent, see:
Godfrey, J. D., Jr.; Mueller, R. H.; Kissick, T. P.; Singh, J. US 5,525,726,
June 11, 1996.
(11) Hanzawa, Y.; Ito, H.; Taguchi, T. Synlett 1995, 299.
(12) Chen, X.; Siddiqi, S. M.; Schneller, S. W. Tetrahedron Lett. 1992, 33, 2249.
(13) Jung, M. E.; Sledeski, A. W. J. Chem. Soc., Chem. Commun. 1993, 589.
10.1021/op970214+ CCC: $15.00 © 1998 American Chemical Society and Royal Society of Chemistry
Published on Web 10/07/1998
Vol. 2, No. 6, 1998 / Organic Process Research & Development
•
393