Paper
Dalton Transactions
Synthesis of Zn-PVP-NPs
2 (a) S. M. Gawish, H. Avci, A. M. Ramadan, S. Mosleh,
R. Monticello, F. Breidt and R. Kotek, J. Biomater. Sci.,
Polym. Ed., 2012, 23, 43; (b) A. A. Revina, E. V. Oksentyuk
and A. A. Fenin, Prot. Met., 2007, 43, 554; (c) V. Engels,
A. E. H. Wheatley, A. Berenguer-Murcia, D. A. Jefferson and
B. F. G. Johnson, Mater. Sci. Forum, 2009, 604–605, 13–17;
(d) A. Miura, H. Wang, B. M. Leonard, H. D. Abruna and
F. Di Salvo, Chem. Mater., 2009, 21, 2661;
(e) L. M. Velichkina, A. N. Pestryakov, A. V. Vosmerikov,
I. V. Tuzovskaya, N. E. Bogdanchikova, M. Avalos, M. Farias
and H. Tiznado, Pet. Chem., 2008, 48, 201.
The above reaction was carried out in the presence of PVP
(0.3269 g). The reactions were performed aiming at a 1 : 0.5
ratio of Zn-NPs to PVP. After 24 hours, the reaction mixture
was allowed to cool to room temperature. The solid residue
was filtered through the glass frit and washed with 20–30 mL
portions of ice cold dry methanol to remove the LiCl and other
side products of the reaction. Further, the black-grey colored
residue was dried under vacuum and characterized as
Zn-PVP-NPs.
3 (a) M.-A. Xue, J.-H. Wu, S. Ye, D. Hu, X.-D. Yang,
Y.-P. Wang, W.-J. Zhu and C.-B. Li, J. Phys. D: Appl. Phys.,
2008, 41, 045501; (b) S. Meirong, C. Miao and Z. Zhijun,
Propellants, Explos., Pyrotech., 2008, 33, 261.
Formation of the phosphine–borane complex
The above reduction reaction was carried out in the presence
of PPh3 (20 mmol). After the reaction time, mesitylene was
evaporated under vacuum. Then the Ph3P:BH3 adduct was
extracted with 25 mL of benzene. It was further recrystallized
from benzene under low temperature. The formation of the
phosphine–borane complex was primarily confirmed by NMR
spectral data. NMR: 11B{1H} (CDCl3), broad doublet at
δ −38.019 and −38.442 ppm (JB–P = 54.3 Hz); 11B{1H} (THF-d8)
broad doublet at δ −39.64 and −40.07 ppm (JB–P = 55.2 Hz),
(Fig. S15, ESI†); 11B (CDCl3) δ −37.94 ppm (m) (Fig. S16, ESI†);
31P{1H} (CDCl3) broad, merged lines at δ 20.85 and 20.43 ppm
(JP–B = 68.0 Hz); 31P{1H} (THF-d8) broad, merged lines 20.90
and 20.52 (61.5 Hz) (Fig. S17, ESI†). The dissimilarities in the
coupling constants are probably due to the line-broadening
in the 31P NMR spectra, which might be induced by the quad-
rupolar interaction of the two nuclear isotopes (11B, I = 3/2,
80.42% naturally abundant and 10B, I = 3, 19.58% naturally
abundant) of the adjacent boron leading to poorly resolved
lines in 31P NMR spectra complicating accurate J measure-
ment. Hence it will be reasonable to use the value obtained
from the 11B NMR spectra.20a,b 1H (CDCl3), δ 7.62–7.28 (15H,
Ph, three set of multiplets), 1.58–1.01, (3H, BH3, poorly
resolved multiplet) (Fig. S18, ESI†). FT-IR: 2245.4 cm−1 (weak,
B–H asymmetric), 2377.6 cm−1 (strong B–H symmetric),
604.41 cm−1 (strong B–P stretching) (Fig. S19, ESI†). Elem.
Anal.: Calcd (found) for C18H18BP: C, 78.30 (78.32); H, 6.57
(6.41); (Fig. S20, ESI†).
4 (a) S. C. Singh and R. Gopal, Bull. Mater. Sci., 2007, 30, 291;
(b) B. N. Pal and D. Chakravorty, J. Phys. Chem. B, 2006,
110, 20917; (c) Y. F. Guan and A. J. Pedraza, Nanotechnology,
2008, 19, 045609; (d) A. A. A. Saleh, X. J. Zhai, Y. C. Zhai,
Y. Fu and A. L. Zhang, Acta Metall. Sin. (Engl. Lett.), 2003,
16, 161; (e) E. H. Khan, S. C. Langford, J. T. Dickinson,
L. A. Boatner and W. P. Hess, Langmuir, 2009, 25, 1930;
(f) Y. Gao and J. Hao, J. Phys. Chem. B, 2009, 113, 9461.
5 (a) F. Rataboul, C. Nayral, M.-J. Casanove, A. Maisonnat
and B. Chaudret, J. Organomet. Chem., 2002, 643–644, 307;
(b) S. Chandra and A. Kumar, Spectrochim. Acta, Part A,
2012, 97, 935–941.
6 (a) H. Jae-Hyuk, Y. Muhammed, Z. Wei, S. J. Satish,
G. K. James, A. Z. Jason, H. Son-Jong, C. B. Robert and
J. U. Terrence, Inorg. Chem., 2008, 47, 9757; (b) H. Son-Jong,
C. B. Robert, W. R. Joseph, R. Job, L. S. Grigorii, Z. Ji-
Cheng, K. Houria and C. A. Channing, J. Phys. Chem. C,
2008, 112, 3164; (c) O. Shin-Ichi, N. Yuko, O. Nobuko,
M. Kazutoshi, A. Masakazu, T. Shin-ichi abd and
Z. Andreas, Appl. Phys. Lett., 2006, 89, 021920;
(d) C. Riccarda, G. Sebastiano, O. David, T. Francesc,
S. Santiago and D. Maria, Phys. Chem. Chem. Phys., 2010,
12, 15093.
7 (a) G. F. Freeguard and L. H. Long, Chem. Ind., 1965, 471;
(b) A. S. Bhanu Prasad, J. V. Bhasker Khanth and
M. Periasamy, Tetrahedron, 1992, 48, 4623; (c) J. McNultya
and Y. Zhou, Tetrahedron Lett., 2004, 45, 407–409;
(d) M. Periasamy, G. P. Muthukumaragopal and
K. N. Sanjeev, Tetrahedron Lett., 2007, 48, 6966.
Acknowledgements
The authors gratefully acknowledge the funding from DRDO,
India, in the form of a research grant to ACRHEM and School
of Chemistry, University of Hyderabad for infrastructure. The
authors acknowledge Mr Anand Kumar Jami, School of Chemi-
stry, University of Hyderabad for his kind help regarding
crystal structure solution.
8 V. Geis, K. Guttsche, C. Knapp, H. Scherer and R. Uzun,
Dalton Trans., 2009, 2687.
9 (a) A. D. Jennifer, L. S. M. Bettye and E. H. James, Chem.
Rev., 2007, 107, 2228; (b) G. Michael and M. Paul, Langmuir,
1993, 9, 3408.
10 (a) A. Munmai and E. Somsook, Abstracts of papers, 239th
ACS national meeting, San Fransicisco, CA, USA, 21–25
March, 2010; (b) O. Ali, M. Barati and H. Shirmohammadi,
Prog. Org. Coat., 2011, 72, 599.
Notes and references
11 S. R. Ghanta and K. Muralidharan, Nanoscale, 2010, 2, 976.
1 B. Ganesh Kumar and K. Muralidharan, J. Mater. Chem., 12 G. V. Ramesh, S. Porel and T. P. Radhakrishnan, Chem. Soc.
2011, 21, 11271.
Rev., 2009, 38, 2646.
8424 | Dalton Trans., 2013, 42, 8420–8425
This journal is © The Royal Society of Chemistry 2013