Communication
ChemComm
the signals from the hydroxy-bearing C3 and the alkoxy-bearing Conflicts of interest
C5 were 79.7 ppm and 65.3 ppm, respectively. In agreement with
Hoffmann’s method, the sum of the signals for the syn-isomers
was greater than the anti-isomers, by 4.9 ppm.
There are no conflicts of interest to declare.
Notes and references
Chemoenzymatically- and chemically-generated triketide
stereoisomers 8aa, 8ab, 8ba, and 8bb were also compared using
complementary, chiral chromatography systems – an OC-H
column coupled with a UV detector and an IF3 column coupled
with a time-of-flight mass spectrometer (Fig. 2B and Fig. S1,
Table S1, ESI†). The anti-isomers, 8ab and 8ba, eluted before
the syn-isomers, 8aa and 8bb, in both chromatographies. While
the anti-isomers could not be resolved from one another on the
OC-H column, they could be on the IF3 column, and while the
syn-isomers could not be resolved from one another on the IF3
column, they could be on the OC-H column. In all four cases,
the targeted stereoisomer of the chemoenzymatic synthesis
matched the chemically-generated stereoisomer. The A-type
MycKR6 and the B-type TylKR2, known to be stereoselectively
robust towards b-ketodiketide NAC thioesters,13 proved to be
stereoselectively robust towards triketide NAC thioesters. KRs
thus have an advantage over most asymmetric catalysts in the
reduction of 1,3 polyol substrates in that they override the
influence of neighboring stereocenters which commonly affect
stereocontrol.32,34
The chemoenzymatic synthesis of a library of two-stereo-
center triketide fragments was accomplished with overall yields
of 2.0% for 9aa, 1.3% for 9ab, 1.7% for 9ba, and 0.9% for 9bb
(in each case the targeted stereoisomer comprises at least 90%
of all possible stereoisomers; stereoisomeric compositions are
reported in Table S1, ESI†). This marks an initial success for the
described general polyketide synthesis and a starting point for
optimization. The yields should be improved, and a protecting
group that can be easily removed at the end of the synthesis but
does not affect KR stereocontrol should be identified. As many
KRs are able to set two stereocenters when reducing a-substituted,
b-ketoacyl substrates,12 the described route may be utilized to
generate libraries of three- or four-stereocenter triketides, for
example through the use of methylmalonyl ethanethiol thioester
in C-acylation reactions. The biocatalytic employment of other
PKS enzymes such as dehydratases and enoylreductases could
further diversify the functionality of synthesized fragments. Reaction
optimization should allow another round of C-acylation and
reduction to generate tetraketides at milligram levels. If the
described, stereoselective synthesis could be generally employed
in the construction of stereocomplex fragments, it would be a
boon to synthetic methodology as well as the development of
new medicines.
1 K. J. Weissman and P. F. Leadlay, Nat. Rev. Microbiol., 2005, 3,
925–936.
2 S. J. Mickel, et al., Org. Process Res. Dev., 2004, 8, 122–130.
3 Y. Lu, S. K. Woo and M. J. Krische, J. Am. Chem. Soc., 2011, 133,
13876–13879.
4 A. R. Mitchell, Biopolymers, 2008, 90, 175–184.
5 R. B. Merrifield, J. Am. Chem. Soc., 1963, 85, 2149–2154.
6 A. M. Michelson and A. R. Todd, J. Chem. Soc., 1955, 2632–2638.
7 R. H. Hall, A. Todd and R. F. Webb, J. Chem. Soc., 1957, 3291–3296.
8 A. T. Keatinge-Clay, Nat. Prod. Rep., 2012, 29, 1050–1073.
9 A. T. Keatinge-Clay, Chem. Rev., 2017, 117, 5334–5366.
10 J. Piel, Nat. Prod. Rep., 2010, 27, 996–1047.
11 E. J. Helfrich and J. Piel, Nat. Prod. Rep., 2016, 33, 231–316.
12 A. T. Keatinge-Clay, Nat. Prod. Rep., 2016, 33, 141–149.
13 S. K. Piasecki, C. A. Taylor, J. F. Detelich, J. N. Liu, J. T. Zheng,
A. Komsoukaniants, D. R. Siegel and A. T. Keatinge-Clay, Chem.
Biol., 2011, 18, 1331–1340.
14 D. C. Gay, G. Gay, A. J. Axelrod, M. Jenner, C. Kohlhaas, A. Kampa,
N. J. Oldham, J. Piel and A. T. Keatinge-Clay, Structure, 2014, 22,
444–451.
15 D. W. Brooks, L. D. L. Lu and S. Masamune, Angew. Chem., Int. Ed.
Engl., 1979, 18, 72–73.
16 Y. H. Pan and C. H. Tan, Synthesis, 2011, 2044–2053.
17 C. Khosla, R. S. Gokhale, J. R. Jacobsen and D. E. Cane, Annu. Rev.
Biochem., 1999, 68, 219–253.
18 A. D. Harper, C. B. Bailey, A. D. Edwards, J. F. Detelich and
A. T. Keatinge-Clay, ChemBioChem, 2012, 13, 2200–2203.
19 T. P. Stinear, et al., Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
1345–1349.
20 E. Cundliffe, N. Bate, A. Butler, S. Fish, A. Gandecha and L. Merson-
Davies, Antonie van Leeuwenhoek, 2001, 79, 229–234.
21 L. H. Zhang, et al., Angew. Chem., Int. Ed., 2017, 56, 1740–1745.
22 A. T. Keatinge-Clay, Angew. Chem., Int. Ed., 2017, 56, 4658–4660.
23 R. Reid, M. Piagentini, E. Rodriguez, G. Ashley, N. Viswanathan,
J. Carney, D. V. Santi, C. R. Hutchinson and R. McDaniel, Biochem-
istry, 2003, 42, 72–79.
24 P. Caffrey, ChemBioChem, 2003, 4, 654–657.
25 A. T. Keatinge-Clay, Chem. Biol., 2007, 14, 898–908.
26 J. T. Zheng and A. T. Keatinge-Clay, MedChemComm, 2013, 4, 34–40.
27 Y. Oikawa, K. Sugano and O. Yonemitsu, J. Org. Chem., 1978, 43,
2087–2088.
28 C. B. Bailey, M. E. Pasman and A. T. Keatinge-Clay, Chem. Commun.,
2016, 52, 792–795.
29 M. A. Skiba, M. M. Bivins, J. R. Schultz, S. M. Bernard, W. D. Fiers,
Q. Dan, S. Kulkarni, P. Wipf, W. H. Gerwick, D. H. Sherman,
C. C. Aldrich and J. L. Smith, ACS Chem. Biol., 2018, 13, 3221–3228.
30 P. C. B. Page, Y. H. Chan, H. Heaney, M. J. McGrath and E. Moreno,
Synlett, 2004, 2606–2608.
31 W. Che, D. Y. C. Wen, S. F. Zhu and Q. L. Zhou, Helv. Chim. Acta,
2019, 102, e1900023.
32 W. Che, Y. Z. Li, J. C. Liu, S. F. Zhu, J. H. Xie and Q. L. Zhou, Org.
Lett., 2019, 21, 2369–2373.
33 R. W. Hoffmann and U. Weidmann, Chem. Ber., 1985, 118,
3980–3992.
34 S. Masamune, W. Choy, J. S. Petersen and L. R. Sita, Angew. Chem.,
Int. Ed. Engl., 1985, 24, 1–30.
160 | Chem. Commun., 2020, 56, 157--160
This journal is © The Royal Society of Chemistry 2020