In conclusion, the conjugation of the pyridylbiscarboxamide
conformational codon with the Z-formamidoxime configurational
isomer (FPF triad) allows the folding of a curved, planar motif
through a relay of H-bonds. In the present article, this new triad
was applied to the folding of an open-ended structure (ZZ-open)
and two macrocycles (ZZ-M and Tri(ZZ-M)). The curved FPF
motif is planar and prone to p–p stacking, as exemplified in the
solid-state structures of ZZ-M and Tri(ZZ-M). In both cases,
extensive p–p stacking interactions are expressed to form tubular
structures. In this context, the 3 D structure of Tri(Z-MM) crystals
is particularly striking. Because each molecule is involved in two
orthogonal infinite stacks, the solid is composed of a compact,
crosslinked infinite network of tubular substructures. Although
the cavity defined by the curved FPF motif is probably too small
to offer guest inclusion, its organization into uncapped tubules
is inspiring in the perspective of gas storage. Several enlarged
analogs of the pyridyl-biscarboxamide codon have been used
to expand the cavity of folded helices.4a They may similarly be
used in conjunction with the formamidoxime subunit in order to
expand the cavity of the tubular channels reported herein, and
allow significant gas/guest loading, while the orthogonal self-
assembled tubules (assuming they are maintained) should promote
fast exchange in and out of the crystal.
Curr. Opin. Chem. Biol., 2001, 5, 650–653; (d) Foldamers: structures,
properties and applications, Ed. S. Hecht and I. Huc, Wiley-VCH, 2007;
(e) A. D. Bautista, C. J. Craig, E. A. Harker and A. Schepartz, Curr.
Opin. Chem. Biol., 2007, 11, 685–692; (f) E. Yashima and K. Maeda,
Macromolecules, 2008, 41, 3–12; (g) R. A. Smaldone and J. S. Moore,
Chem.–Eur. J., 2008, 14, 2650–2657; (h) W. S. Horne and S. H. Gellman,
Acc. Chem. Res., 2008, 41, 1399–1408; (i) X. Li, Y.-D. Wu and D.
Yang, Acc. Chem. Res., 2008, 41, 1428–1438; (j) D. Haldar and C.
Schmuck, Chem. Soc. Rev., 2009, 38, 363–371; (k) I. Saraogi and A.
D. Hamilton, Chem. Soc. Rev., 2009, 38, 1726–1743; (l) H. Juwarker,
J.-M. Suk and K.-S. Jeong, Chem. Soc. Rev., 2009, 38, 3316–3335;
(m) C. A. Olsen, ChemBioChem, 2010, 11, 152–160; (n) B.-B. Ni, Q.
Yan, Y. Ma and D. Zhao, Coord. Chem. Rev., 2010, 254(9–10), 954–
971; (o) G. Guichard and I. Huc, Chem. Commun., 2011, 47, 5933–
5941.
4 (a) I. Huc, Eur. J. Org. Chem., 2004, 17–29; (b) G. Licini, L. J. Prins and
P. Scrimin, Eur. J. Org. Chem., 2005, 969–977; (c) X. Li, Y.-D. Wu and
D. Yang, Chem. Commun., 2006, 3367–3379; (d) Z.-T. Li, J.-L. Hou
and C. Li, Acc. Chem. Res., 2008, 41, 1343–1353; (e) B. Gong, Acc.
Chem. Res., 2008, 41, 1376–1386; (f) X.-L. Zhao and Z.-T. Li, Chem.
Commun., 2010, 46, 1601–1616.
5 (a) C. Bailly, I. O. Donkor, D. Gentle, M. Thornalley and M. J. Waring,
Mol. Pharmacol., 1994, 46, 313–322; (b) T. C. Jenkins and A. N. Lane,
Biochim. Biophys. Acta, Gene Struct. Expression, 1997, 1350, 189–204;
(c) A. N. Lane, T. C. Jenkins and T. A. Frenkiel, Biochim. Biophys. Acta,
Gene Struct. Expression, 1997, 1350, 205–220; (d) B. Nguyen, M. P. H.
Lee, D. Hamelberg, A. Joubert, C. Bailly, R. Brun, S. Neidle and W. D.
Wilson, J. Am. Chem. Soc., 2002, 124, 13680–13681; (e) M. Rahimian,
A. Kumar, M. Say, S. A. Bakunov, D. W. Boykin, R. R. Tidwell and
W. D. Wilson, Biochemistry, 2009, 48, 1573–1583; (f) T. P. Mathews, A.
J. Kennedy, Y. Kharel, P. C. Kennedy, O. Nicoara, M. Sunkara, A. J.
Morris, B. R. Wamhoff, K. R. Lynch and T. L. MacDonald, J. Med.
Chem., 2010, 53, 2766–2778; (g) C. Marzano, S. Mazzega Sbovata, V.
Gandin, D. Colavito, E. Del Giudice, R. A. Michelin, A. Venzo, R.
Seraglia, F. Benetollo, M. Schiavon and R. Bertani, J. Med. Chem.,
2010, 53, 6210–6227.
6 (a) M. W. Hosseini, R. Ruppert, P. Schaeffer, A. De Cian, N. Kyritsakas
and J. Fischer, J. Chem. Soc., Chem. Commun., 1994, 2135–2136; (b) F.
Auer, G. Nelles and B. Sellergen, Chem.–Eur. J., 2004, 10, 3232–3240;
(c) T. Maeda, Y. Furusho, S.-I. Sakurai, J. Kumaki, K. Okoshi and E.
Yashima, J. Am. Chem. Soc., 2008, 130, 7938–7945; (d) E. Yashima, K.
Maeda and Y. Furusho, Acc. Chem. Res., 2008, 41, 1166–1180; (e) H.
Iida, M. Shimoyama, Y. Furusho and E. Yashima, J. Org. Chem., 2010,
75, 417–423; (f) H. Ito, M. Ikeda, T. Hasegawa, Y. Furusho and E.
Yashima, J. Am. Chem. Soc., 2011, 133, 3419–3432.
Acknowledgements
The authors would like to thank Dr. F. Sauriol for assistance
with NMR experiments, and Queen’s University, the National
Science and Engineering Research Council of Canada, the Cana-
dian Foundation for Innovation and the Ontario Ministry of
Research and Innovation (Early Researcher Award) for financial
support.
Notes and references
§ This observation is consistent with what we observed at room temperature
in DMSO-d6 on open structures such as ZZ-open.
7 (a) J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219–300;
(b) F. A. Cotton, C. Lin and C. A. Murillo, Acc. Chem. Res., 2001, 34,
759–771; (c) M. H. Chisholm and A. M. Macintosh, Chem. Rev., 2005,
105, 2949–2976; (d) M. P. Coles, Dalton Trans., 2006, 985–1001; (e) D.
D. D´ıaz, S. S. Gupta, J. Kuzelka, M. Cymborowski, M. Sabat and M.
G. Finn, Eur. J. Inorg. Chem., 2006, 4489–4493; (f) P. C. Junk and M. L.
Cole, Chem. Commun., 2007, 1579–1590; (g) D. Arquier, L. Vendier, K.
Miqueu, J.-M. Sotiropoulos, S. Bastin and A. Igau, Organometallics,
2009, 28, 4945–4957; (h) F. T. Edelmann, Chem. Soc. Rev., 2009, 38,
2253–2268.
¶ These crystals were grown in the presence of the dimethylammonium
triflate condensation by-product and triflate. Although they were both
incorporated into the crystal,‡ they are omitted in Fig. 2 for clarity.
˚
ꢀ Selected bond distances for Tri(ZZ-M) (A): N16 ◊ ◊ ◊ H15B: 2.364,
H15B ◊ ◊ ◊ O9: 2.209, N16 ◊ ◊ ◊ H17A: 2.306, H17A ◊ ◊ ◊ O12: 2.169,
N4 ◊ ◊ ◊ H5A: 2.293, H5A ◊ ◊ ◊ O4: 2.196, N4 ◊ ◊ ◊ H3B: 2.295, H3B ◊ ◊ ◊ O1:
2.220, N10 ◊ ◊ ◊ H11B: 2.339, H11B ◊ ◊ ◊ O8: 2.242, N10 ◊ ◊ ◊ H11A: 2.326,
H11A ◊ ◊ ◊ O5: 2.260.
8 (a) L. Xing, C. Wiegert and A. Petitjean, J. Org. Chem., 2009, 74,
9513–9516; (b) M. dF. Capela, N. J. Mosey, L. Xing, R. Wang and A.
Petitjean, Chem.–Eur. J., 2011, 17, 4598–4612.
9 For selected examples, see: (a) D. Hall, Acta Crystallogr., 1965, 18,
955–958; (b) B. L. Booth, F. A. T. Costa, Z. Mahmood, R. G. Pritchard
and M. F. Proenc¸a, J. Chem. Soc., Perkin Trans. 1, 1999, 1853–1858;
(c) B. A. Bovenzi and G. A. Pearse Jr, J. Chem. Soc., Dalton Trans.,
1997, 2793–2797; (d) K. Okuda, T. Tagata, S. Kashino, T. Hirota and
K. Sasaki, Chem. Pharm. Bull., 2009, 57, 1296–1299.
10 (a) Y. Hamuro, S. J. Geib and A. D. Hamilton, Angew. Chem., Int. Ed.
Engl., 1994, 33, 446–448; (b) C. A Hunter, C. M. R. Low, M. J. Packer,
S. E. Spey, J. G. Vinter, M. O. Vysotsky and C. Zonta, Angew. Chem.,
Int. Ed., 2001, 40, 2678–2682; (c) P. Ballester, A. Costa, P. M. Deya`,
A. Frontera, R. M. Gomila, A. I. Oliva, J. K. M. Sanders and C. A.
Hunter, J. Org. Chem., 2005, 70, 6616–6622.
11 (a) W. Zhao, MSc thesis, Queen’s University, Canada 2011; (b) W.
Zhao, R. Wang, N. J. Mosey and A. Petitjean, Org. Lett., 2011,
DOI: 10.1021/ol202032k.
1 (a) D. Voet and J. G. Voet, Biochemistry, Wiley, 4th edition, Chapt.
9; (b) M. Jager, S. Deechongkit, E. K. Koepf, H. Nguyen, J. Gao, E.
T. Powers, M. Gruebele and J. W. Kelly, Biopolymers, 2008, 90, 751–
758; (c) G. N. Tew, R. W. Scott, M. L. Klein and W. F. De Grado,
Acc. Chem. Res., 2010, 43, 30–39; (d) B. Lamarre, J. Ravi and M. G.
Ryadnov, Chem. Commun., 2011, 47, 9045–9047.
2 (a) M. Stefani Protein Misfolding in Neurogenerative Diseases: Mech-
anisms and Therapeutic Strategies, Ed. H. J. Smith, C. Simons and R.
D. E. Sewell, CRC Press, 2008, pp 1–66; (b) R. Hilker, J. M. Brotchie
and J. Chapman, BMC Neurol., 2011, 11, 74–78; (c) F. Shewmaker,
R. P. McGlinchey and R. B. Wickner, J. Biol. Chem., 2011, 286,
16533–16540; (d) D. S. T. Ong and J. W. Kelly, Curr. Opin. Cell Biol.,
2011, 23, 231–238; (e) A. J. Harrington, A. L. Knight, G. A. Caldwell
and K. A. Caldwell, Methods, 2011, 53, 220–225; (f) J. E. Galvin,
Prion, 2011, 5, 16–21; (g) P. Gambetti, I. Cali, S. Notari, Q.-Z. Kong,
W.-Q. Zou and W. K. Surewicz, Acta Neuropathol., 2011, 121, 79–
90.
3 (a) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173–180; (b) D. J.
Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem.
Rev., 2001, 101, 3893–4011; (c) M. S. Cubberley and B. L. Iverson,
12 (a) S. Kumar, M. S. Hundal, N. Kaur, R. Singh and H. Singh,
Tetrahedron Lett., 1995, 36, 9543–9546; (b) A. P. Bisson, V. M. Lynch,
7650 | Org. Biomol. Chem., 2011, 9, 7647–7651
This journal is
The Royal Society of Chemistry 2011
©