Communication
the synthesis of compound 5. Initial attempts indicated that scopy experiments. S.S. acknowledges the Friedrich-Ebert Stif-
synthetic 5 is unstable in solution and decomposes quickly to tung for financial support and Prof. L. F. M. L. Ciscato, S. Haben-
final product 8. Therefore, all subsequent procedures were per- icht, Prof. S. Gräfe, and Dr. S. Kupfer for their advice. This re-
formed below 5 °C and in the absence of light. The recorded search was in part performed by using Core Technology Plat-
absorption and emission spectra of deprotonated synthetic 5 form resources at New York University Abu Dhabi.
correspond to those recorded from a spent solution (Figure 2)
and are consistent with the predicted theoretical results. This Keywords: Luminescence · Bioluminescence ·
finding is in agreement with the reaction path: v→vi→vii.
Photochemistry · Reaction mechanisms · Oxygen heterocycles ·
On the basis of these two arguments, we conclude that the Natural products
emitter of the CL reaction of 2-coumaranone 7 is form 5a of
compound 5.
[
1] I. Navizet, Y.-J. Liu, N. Ferré, D. Roca-Sanjuán, R. Lindh, ChemPhysChem
How can this study be a model for bioluminescent systems?
First, the present chemiluminescent system presents the forma-
tion and decomposition of the dioxetanone moiety, as in most
bioluminescent systems, and all insight into such a decomposi-
tion can be relevant for bioluminescent systems. Second, emit-
ter 5 may also be structurally related to the newly discovered
2011, 12, 3064–3076.
2] B.-W. Ding, P. Naumov, Y.-J. Liu, J. Chem. Theory Comput. 2015, 11, 591–
[
5
99.
[
[
3] T. Wilson, J. W. Hastings, Annu. Rev. Cell Dev. Biol. 1998, 14, 197–230.
4] J. Vieira, L. Pinto da Silva, J. C. G. Esteves da Silva, J. Photochem. Photobiol.
B 2012, 117, 33–39.
[5] L. Pinto da Silva, J. C. G. Esteves da Silva, ChemPhysChem 2012, 13, 2257–
[
7]
2262.5a.
Fridericia heliota oxyluciferin. The latter has two moieties in-
volved in bioluminescence: the lysine part, at which formation
[
6] V. N. Petushkov, M. A. Dubinnyi, A. S. Tsarkova, N. S. Rodionova, M. S.
Baranov, V. S. Kublitski, O. Shimomura, I. V. Yampolsky, Angew. Chem. Int.
Ed. 2014, 53, 5566–5568; Angew. Chem. 2014, 126, 5672–5674.
of dioxetanone and release of CO occur, and a chromophore
2
(
CompX). The conjugated system of CompX is very similar to
[7] M. A. Dubinnyi, Z. M. Kaskova, N. S. Rodionova, M. S. Baranov, A. Y. Gorok-
hovatsky, A. Kotlobay, K. M. Solntsev, A. S. Tsarkova, V. N. Petushkov, I. V.
Yampolsky, Angew. Chem. Int. Ed. 2015, 54, 7065–7067; Angew. Chem.
the herein-studied 2-coumaranone systems (see Figure S10).
Thus, the present chemiluminescence system may be used to
understand the role of the bioluminescent CompX moiety.
2015, 127, 7171–7173.
[
8] K. V. Purtov, V. N. Petushkov, M. S. Baranov, K. S. Mineev, N. S. Rodionova,
Z. M. Kaskova, A. S. Tsarkova, A. I. Petunin, V. S. Bondar, E. K. Rodicheva,
S. E. Medvedeva, Y. Oba, Y. Oba, A. S. Arseniev, S. Lukyanov, J. I. Gitelson,
I. V. Yampolsky, Angew. Chem. Int. Ed. 2015, 54, 8124–8128; Angew. Chem.
Conclusions
2015, 127, 8242–8246.
[
9] H. Würfel, D. Weiss, R. Beckert, A. Güther, J. Sulfur Chem. 2012, 33, 9–16.
In summary, by using a combined experimental and computa-
tional approach, a fundamental step in the mechanism of a
class of strongly chemiluminescent 2-coumaranones was herein
clarified. The key intermediates were identified on the basis of
direct comparison with their synthetic analogues, and conclu-
sions were aided by computational assessment of the viable
isomers. Both the experimental and computational results were
consistent and showed that the open form was the light emit-
ter, not the closed form, in the chemiluminescence of 2-coum-
aranones. The open form may be structurally related to the
chromophore (CompX) of the Fridericia heliota bioluminescence
system and provides a convenient model for the latter, which
is difficult to access by experimental methods. The results pre-
sented herein highlight the successful utility of complementary
approaches in resolving nontrivial mechanistic pathways. Fur-
ther calculations on the formation and opening of the diox-
etanone will provide additional information on this fundamen-
tal reaction in bio- and chemiluminescent systems.
[
[
10] T. B. Shrestha, D. L. Troyer, S. H. Bossmann, Synthesis 2014, 46, 646–652.
11] A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini,
B. Roda, P. Simoni, Biosens. Bioelectron. 2016, 76, 164–179.
[12] M. Zangheri, L. Cevenini, L. Anfossi, C. Baggiani, P. Simoni, F. Di Nardo,
A. Roda, Biosens. Bioelectron. 2015, 64, 63–68.
[
[
13] L. J. Kricka, Anal. Chim. Acta 2003, 500, 279–286.
14] G. J. Lofthouse, H. Suschitzky, B. J. Wakefield, R. A. Whittaker, B. Tuck, J.
Chem. Soc. Perkin Trans. 1 1979, 1634–1639.
[15] B. Matuszczak, Monatsh. Chem. 1996, 127, 1291–1303.
16] B. Matuszczak, Die Pharmazie 1996, 51, 862–865.
17] B. Matuszczak, Monatsh. Chem. 1997, 128, 945–951.
18] B. Matuszczak, J. Prakt. Chem./Chem.-Ztg. 1998, 340, 20–25.
19] S. Schramm, L. F. M. L. Ciscato, P. Oesau, R. Krieg, J. F. Richter, I. Navizet, D.
Roca-Sanjuána, D. Weiß, R. Beckert, ARKIVOC (Gainesville, FL, U.S.) 2015,
5, 44–59.
20] S. Schramm, D. Weiß, H. Brandl, R. Beckert, H. Görls, D. Roca-Sanjuána, I.
Navizet, ARKIVOC (Gainesville, FL, U.S.) 2013, 3, 174–188.
21] L. F. M. L. Ciscato, F. H. Bartoloni, A. S. Colavite, D. Weiss, R. Beckert, S.
Schramm, Photochem. Photobiol. Sci. 2014, 13, 32–37.
[
[
[
[
[
[
[22] F. H. Bartoloni, M. A. de Oliveira, L. F. M. L. Ciscato, F. A. Augusto, E. L.
Bastos, W. J. Baader, J. Org. Chem. 2015, 80, 3745–3751.
[
23] M. M. Sidky, A. A. El-kateb, M. R. Mahran, I. T. Hennawy, H. A. A. El-Malek,
Phosphorus Sulfur Silicon Relat. Elem. 1987, 29, 11–15.
[
[
24] G. J. Woolfe, P. J. Thistlethwaite, J. Am. Chem. Soc. 1980, 102, 6917–6923.
25] R. Poláček, P. Májek, K. Hroboňová, J. Sádecká, J. Fluoresc. 2015, 25, 297–
Acknowledgments
2
93.
This work was financially supported by New York University Abu
Dhabi. The authors thank the service team of the IOMC and
IAAC in Jena and in particular Dr. W. Günther for NMR spectro-
Received: December 2, 2015
Published Online: January 12, 2016
Eur. J. Org. Chem. 2016, 678–681
www.eurjoc.org
681
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim