ChemPlusChem
10.1002/cplu.201700340
COMMUNICATION
4
-nitrofuroxan subunit. Detailed analysis of the functional
Zhang, J. M. Shreeve, Angew. Chem. 2016, 128, 11720-11723; Angew.
Chem. Int. Ed. 2016, 55, 11548-11551; d) H. Wei, C. He, J. Zhang, J. M.
Shreeve, Angew. Chem. 2015, 127, 9499-9503; Angew. Chem. Int. Ed.
properties of isomeric dinitrobi-1,2,5-oxadiazoles reveals that this
type of coupled hydrogen-free high energetic molecules
represents the attractive features as a high energy content and
high density, providing the performance exceeding the nitramines.
Presented synthetic data and detailed characterization appeared
to be an important step toward the development of a nitrofuroxan-
and nitrofurazan-based energetic materials. Described energetic
alliance of nitrofurazan and nitrofuroxan scaffolds resulted in an
excellent combination of easy access, high performance and
acceptable sensitivity. Therefore, these compounds may serve as
well alternative to the known commonly used explosives and, thus,
may be considered to find real-life applications as a new
generation secondary energetic materials.
2015, 54, 9367-9371; e) J. Zhang, S. Dharavath, L. A. Mitchell, D. A.
Parrish, J. M. Shreeve, J. Mater. Chem. A 2016, 4, 16961-16967; f) C.
He, J. M. Shreeve, Angew. Chem. 2016, 128, 782-785; Angew. Chem.
Int. Ed. 2016, 55, 772-775; g) Y. Tang, C. He, L. A. Mitchell, D. A. Parrish,
J. M. Shreeve, Chem. Eur. J. 2016, 22, 11846-11853.
[6]
a) D. Fischer, T. M. Klapӧtke, J. Stierstorfer, Eur. J. Inorg. Chem. 2014,
5808-5811; b) D. Fischer, T. M. Klapӧtke, M. Reymann, J. Stierstorfer,
Chem. Eur. J. 2014, 20, 6401-6411; c) D. Fischer, T. M. Klapӧtke, M.
Reymann, J. Stierstorfer, M. B. R. Vӧlkl, New J. Chem. 2015, 39, 1619-
1627; d) T. M. Klapӧtke, T. G. Witkowski, Propellants Explos. Pyrotech.
2015, 40, 366-373; e) T. M. Klapӧtke, C. Pflüger, Z. Anorg. Allg. Chem.
2017, 643, 619-624.
[
[
7]
8]
a) Q. Sun, C. Shen, X. Li, Q. Lin, M. Lu, J. Mater. Chem. A 2017, 5,
1063-11070; b) L. Liang, K. Wang, C. Bian, L. Ling, Z. Zhou, Chem. Eur.
1
J. 2013, 19, 14902-14910; c) D. E. Chavez, D. A. Parrish, P. Leonard,
Synlett 2012, 23, 2126-2128; d) J. M. Veauthier, D. E. Chavez, B. C.
Tappan, D. A. Parrish, J. Energ. Mater. 2010, 28, 229-249.
Acknowledgements
I. V. Ovchinnikov, N. N. Makhova, L. I. Khmel’nitskii, V. S. Kuz’min, L. N.
Akimova, V. I. Pepekin, Dokl. Chem. Engl. Transl. 1998, 359, 67-70.
R. Tsyshevsky, P. Pagoria, M. Zhang, A. Racoveanu, A. DeHope, D.
Parrish, M. M. Kuklja, J. Phys. Chem. C 2015, 119, 3509-3521.
This work was supported by the Russian President’s Council for
Grants (Project MK-1302.2017.3) and the Russian Foundation for
Basic Research (Project 16-29-01042). Anna A. Romanova is
grateful to the Russian Science Foundation (Project 14-13-00884)
for the financial support of the X-ray diffraction studies and
[9]
[
[
10] M. D. Coburn, J. Heterocycl. Chem. 1968, 5, 83-87.
11] a) L. L. Fershtat, N. N. Makhova, Russ. Chem. Rev. 2016, 85, 1097-
1
145; b) S. G. Zlotin, A. M. Churakov, O. A. Luk’yanov, N. N. Makhova,
A. Yu. Sukhorukov, V. A. Tartakovsky, Mendeleev Commun. 2015, 25,
99-409; c) L. L. Fershtat, M. A. Epishina, I. V. Ovchinnikov, M. I.
quantum
chemical
calculations.
Electron
microscopy
characterization was performed in the Department of Structural
Studies of Zelinsky Institute of Organic Chemistry, Moscow. The
authors also thank Dr. M. N. Makhov for the calculation of the
detonation parameters.
3
Struchkova, A. A. Romanova, I. V. Ananyev, N. N. Makhova,
Tetrahedron Lett. 2016, 57, 5685-5689; d) L. L. Fershtat, A. A. Larin, M.
A. Epishina, I. V. Ovchinnikov, A. S. Kulikov, I. V. Ananyev, N. N.
Makhova, Tetrahedron Lett. 2016, 57, 4268-4272; e) L. L. Fershtat, A. A.
Larin, M. A. Epishina, I. V. Ovchinnikov, A. S. Kulikov, I. V. Ananyev, N.
N. Makhova, RSC Adv. 2016, 6, 31526-31539; f) L. L. Fershtat, M. A.
Epishina, A. S. Kulikov, I. V. Ovchinnikov, I. V. Ananyev, N. N. Makhova,
Tetrahedron 2015, 71, 6764-6775; g) L. L. Fershtat, I. V. Ananyev, N. N.
Makhova, RSC Adv. 2015, 5, 47248-47260.
Conflict of interest
The authors declare no conflict of interest.
[
[
[
12] T. Ichikawa, T. Kato, T. Takenishi, J. Heterocycl. Chem. 1965, 2, 253-
2
55.
13] X. Huang, R. J. Gillies, H. Tian, J. Label Compd. Radiopharm. 2015, 58,
56-162.
Keywords: energetic materials • explosives • nitrogen
heterocycles • oxadiazoles • structure elucidation
1
14] a) I. V. Ovchinnikov, A. O. Finogenov, M. A. Epishina, A. S. Kulikov, Yu.
A. Strelenko, N. N. Makhova, Russ. Chem. Bull. Int. Ed. 2009, 58, 2137-
2146; b) L. L. Fershtat, M. I. Struchkova, A. S. Goloveshkin, I. S.
Bushmarinov, N. N. Makhova, Heteroat. Chem. 2014, 25, 226-237.
[
[
1]
2]
J. P. Agrawal, R. D. Hodgson, Organic Chemistry of Explosives, Wiley,
New York, 2007.
a) Q. Zhang, J. M. Shreeve, Chem. Rev. 2014, 114, 10527-10574; b) I.
V. Kuchurov, M. N. Zharkov, L. L. Fershtat, N. N. Makhova, S. G. Zlotin,
ChemSusChem 2017, 10, DOI: 10.1002/cssc.201701053.
[15] a) K. Yu. Suponitsky, K. A. Lyssenko, M. Yu. Antipin, N. S. Aleksandrova,
A. B. Sheremetev, T. S. Novikova, Russ. Chem. Bull. Int. Ed. 2009, 58,
2129-2136; b) K. Yu. Suponitsky, K. A. Lyssenko, I. V. Ananyev, A. M.
Kozeev, A. B. Sheremetev, Cryst. Growth Des. 2014, 14, 4439-4449; c)
E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170-
173; d) I. V. Ananyev, V. A. Karnoukhova, A. O. Dmitrienko, K. A.
Lyssenko, J. Phys. Chem. A 2017, 121, 4517-4522.
[
[
3]
4]
a) T. M. Klapӧtke, Chemistry of High-Energy Materials 3rd ed., De
Gruyter, Berlin, 2015; b) Z. Xu, G. Cheng, H. Yang, X. Ju, P. Yin, J.
Zhang, J. M. Shreeve, Angew. Chem. 2017, 129, 5971-5975; Angew.
Chem. Int. Ed. 2017, 56, 5877-5881; c) D. Kumar, G. H. Imler, D. A.
Parrish, J. M. Shreeve, Chem. Eur. J. 2017, 23, 1743-1747.
a) D. Fischer, T. M. Klapӧtke, J. Stierstorfer, Chem. Commun. 2016, 52,
[16] N. V. Muravyev, K. A. Monogarov, A. A. Bragin, I. V. Fomenkov, A. N.
Pivkina, Thermochim. Acta 2016, 631, 1-7.
916-918; b) M. A. Kettner, T. M. Klapӧtke, Chem. Commun. 2014, 50,
2
268-2270; c) N.-D. H. Gamage, B. Stiasny, J. Stierstorfer, P. D. Martin,
[17] M. J. Kamlet, S. J. Jacobs, J. Chem. Phys. 1968, 48, 23-35.
[18] STANAG 4489. Ed. 1. Explosives, Impact Sensitivity Tests; NATO
standardization agreement; NATO: Brussels, 1999.
T. M. Klapӧtke, C. H. Winter, Chem. Commun. 2015, 51, 13298-13300;
d) P. Yin, Q. Zhang, J. M. Shreeve, Acc. Chem. Res. 2016, 49, 4-16; e)
S. Dharavath, J. Zhang, G. H. Imler, D. A. Parrish, J. M. Shreeve, J.
Mater. Chem. A 2017, 5, 4785-4790; f) Y. Tang, C. He, J. M. Shreeve, J.
Mater. Chem. A 2017, 5, 4314-4319.
[19] STANAG 4487. Ed.1. Explosives, Friction Sensitivity Tests; NATO
standardization agreement; NATO: Brussels, 2002.
[20] a) I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, A. V. Kormanov, M. I.
Struchkova, K. Yu. Suponitsky, A. A. Bragin, K. A. Monogarov, V. P.
Sinditskii, A. B. Sheremetev, Chem. Asian J. 2015, 10, 1987-1996; b) J.
L. Holmes, C. Aubry, J. Phys. Chem. A 2012, 116, 7196-7209.
[
5]
a) J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445; b)
C. He, Y. Tang, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, J. Mater.
Chem. A 2016, 4, 8969-8973; c) Y. Liu, J. Zhang, K. Wang, J. Li, Q.
This article is protected by copyright. All rights reserved.