NA TUR E COMM UNICAT IO NS | ht t ps ://doi .or g / 10 .1 0 38/ s 41 46 7 -02 1- 23 7 36-2
A R T I C L E
3
3
3
3. Genovino, J., Sames, D., Hamann, L. G. & Touré, B. B. Accessing drug
metabolites via transition-metal catalyzed C−H oxidation: the liver as
synthetic inspiration. Angew. Chem. Int. Ed. 55, 14218–14238 (2016).
4. Lane, B. S., Brown, M. A. & Sames, D. Direct palladium-catalyzed C-2 and C-3
arylation of indoles: a mechanistic rationale for regioselectivity. J. Am. Chem.
Soc. 127, 8050–8057 (2005).
5. Goikhman, R., Jacques, T. L. & Sames, D. C−H bonds as ubiquitous
functionality: a general approach to complex arylated pyrazoles via sequential
regioselective C-arylation and N-alkylation enabled by SEM-group
transposition. J. Am. Chem. Soc. 131, 3042–3048 (2009).
61. Litvinas, N. D., Fier, P. S. & Hartwig, J. F. A general strategy for the
perfluoroalkylation of arenes and arylbromides by using arylboronate esters
F
and [(phen)CuR ]. Angew. Chem. Int. Ed. 51, 536–539 (2012).
62. Eastabrook, A. S., Wang, C., Davison, E. K. & Sperry, J. A procedure for
transforming indoles into indolequinones. J. Org. Chem. 80, 1006–1017
(2015).
63. Meyer-Eppler, G. et al. Cheap and easy synthesis of highly functionalized
(Het)aryl iodides via the aromatic Finkelstein reaction. Synthesis 46,
1085–1090 (2014).
64. Cooper, T., Novak, A., Humphreys, L. D., Walker, M. D. & Woodward, S.
User-friendly methylation of aryl and vinyl halides and pseudohalides with
3
6. Wang, X., Lane, B. S. & Sames, D. Direct C-arylation of free (NH)-indoles and
pyrroles catalyzed by Ar−Rh(III) complexes assembled in situ. J. Am. Chem.
Soc. 127, 4996–4997 (2005).
3
DABAL-Me . Adv. Synth. Catal. 348, 686–690 (2006).
65. Wang, B., Sun, H.-X. & Sun, Z.-H. A general and efficient Suzuki-Miyaura
cross-coupling protocol using weak base and no water: the essential role of
acetate. Eur. J. Org. Chem. 2009, 3688–3692 (2009).
3
7. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed
transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).
8. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural
product synthesis using metal-catalysed C–H bond functionalisation. Chem.
Soc. Rev. 40, 1885–1898 (2011).
3
66. Suresh, A. S., Baburajan, P. & Ahmed, M. Synthesis of primary amides by
3
aminocarbonylation of aryl/hetero halides using non-gaseous NH and CO
sources. Tetrahedron Lett. 56, 4864–4867 (2015).
3
4
4
9. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The
medicinal chemist’s toolbox for late stage functionalization of drug-like
molecules. Chem. Soc. Rev. 45, 546–576 (2016).
0. Yang, L. & Huang, H. Transition-metal-catalyzed direct addition of
unactivated C–H bonds to polar unsaturated bonds. Chem. Rev. 115,
67. Ramnauth, J., Bhardwaj, N., Renton, P., Rakhit, S. & Maddaford, S. P.
The room-temperature palladium-catalyzed cyanation of aryl bromides
and iodides with tri-t-butylphosphine as ligand. Synlett 2003, 2237–2239
(2003).
68. Fier, P. S., Luo, J. & Hartwig, J. F. Copper-mediated fluorination of
arylboronate esters. identification of a copper(III) fluoride complex. J. Am.
Chem. Soc. 135, 2552–2559 (2013).
69. Taylor, N. J. et al. Derisking the Cu-mediated 18F-fluorination of heterocyclic
positron emission tomography radioligands. J. Am. Chem. Soc. 139,
8267–8276 (2017).
3468–3517 (2015).
1. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-
catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45,
2900–2936 (2016).
4
4
2. Mukai, K. et al. Bioinspired chemical synthesis of monomeric and dimeric
stephacidin A congeners. Nat. Chem. 10, 38–44 (2017).
3. Kerschgens, I., Rovira, A. R. & Sarpong, R. Total synthesis of (−)-xishacorene
B from (R)-carvone using a C–C activation strategy. J. Am. Chem. Soc. 140,
70. Furuya, T. & Ritter, T. Fluorination of boronic acids mediated by silver(I)
triflate. Org. Lett. 11, 2860–2863 (2009).
71. Tang, P., Wang, W. & Ritter, T. Deoxyfluorination of phenols. J. Am. Chem.
Soc. 133, 11482–11484 (2011).
9810–9813 (2018).
4
4. Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive
72. Furuya, T., Strom, A. E. & Ritter, T. Silver-mediated fluorination of
functionalized aryl stannanes. J. Am. Chem. Soc. 131, 1662–1663 (2009).
73. Liu, S., Scotti, J. S. & Kozmin, S. A. Emulating the logic of monoterpenoid
alkaloid biogenesis to access a skeletally diverse chemical library. J. Org. Chem.
78, 8645–8654 (2013).
fluorination of cyclic amines by carbon–carbon cleavage. Science 361, 171–174
(
2018).
4
5. Liao, K. et al. Site-selective and stereoselective functionalization of non-
activated tertiary C–H bonds. Nature 551, 609–613 (2017).
4
6. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of
heteroarenes: scope, regioselectivity, application to late-stage
functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014).
7. Preshlock, S. M. et al. A traceless directing group for C–H borylation. Angew.
Chem. Int. Ed. 52, 12915–12919 (2013).
74. Movassaghi, M., Schmidt, M. A. & Ashenhurst, J. A. Stereoselective oxidative
rearrangement of 2-aryl tryptamine derivatives. Org. Lett. 10, 4009–4012
(2008).
75. Ishikawa, H., Takayama, H. & Aimi, N. Dimerization of indole derivatives
with hypervalent iodines(III): a new entry for the concise total synthesis of
rac- and meso-chimonanthines. Tetrahedron Lett. 43, 5637–5639 (2002).
76. Jiang, L. I. et al. Use of a cAMP BRET sensor to characterize a novel regulation
of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 282,
10576–10584 (2007).
77. Kenakin, T. A scale of agonism and allosteric modulation for assessment of
selectivity, bias, and receptor mutation. Mol. Pharm. 92, 414–424 (2017).
78. Gillis, A. et al. Low intrinsic efficacy for G protein activation can explain the
improved side effect profiles of new opioid agonists. Sci. Signal. 13, eaaz3140
(2020).
79. Stoeber, M. et al. Agonist-selective recruitment of engineered protein probes
and of GRK2 by opioid receptors in living cells. eLife 9, e54208 (2020).
80. Gutridge, A. M. et al. G protein-biased kratom-alkaloids and synthetic
carfentanil-amide opioids as potential treatments for alcohol use disorder. Br.
J. Pharm. 177, 1497–1513 (2020).
4
4
8. Murphy, J. M., Liao, X. & Hartwig, J. F. Meta halogenation of 1,3-disubstituted
arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129,
15434–15435 (2007).
4
5
5
5
9. Paul, S. et al. Ir-catalyzed functionalization of 2-substituted indoles at the 7-
position: nitrogen-directed aromatic borylation. J. Am. Chem. Soc. 128,
1
5552–15553 (2006).
0. Homer, J. A. & Sperry, J. A short synthesis of the endogenous plant metabolite
-hydroxyoxindole-3-acetic acid (7-OH-OxIAA) using simultaneous C–H
7
borylations. Tetrahedron Lett. 55, 5798–5800 (2014).
1. Leitch, J. A., Bhonoah, Y. & Frost, C. G. Beyond C2 and C3: transition-
metal-catalyzed C–H functionalization of indole. ACS Catal. 7, 5618–5627
(
2017).
2. Feng, Y. et al. Total synthesis of verruculogen and fumitremorgin A enabled
by ligand-controlled C–H borylation. J. Am. Chem. Soc. 137, 10160–10163
(
2015).
81. Matsumoto, K. et al. Antinociceptive effect of 7-hydroxymitragynine in mice:
Discovery of an orally active opioid analgesic from the Thai medicinal herb
Mitragyna speciosa. Life Sci. 74, 2143–2155 (2004).
5
5
3. Ikeda, M. & Tamura, Y. 3-Haloindolenines—versatile intermediates in the
indole chemistry. Heterocycles 14, 867–888 (1980).
4. Vadola, P. A. & Sames, D. Catalytic coupling of arene C–H bonds and
alkynes for the synthesis of coumarins: substrate scope and application to
the development of neuroimaging agents. J. Org. Chem. 77, 7804–7814 (2012).
5. Yang, Y., Li, R., Zhao, Y., Zhao, D. & Shi, Z. Cu-catalyzed direct C6-arylation
of indoles. J. Am. Chem. Soc. 138, 8734–8737 (2016).
82. Matsumoto, K. et al. Involvement of μ-opioid receptors in antinociception and
inhibition of gastrointestinal transit induced by 7-hydroxymitragynine,
isolated from Thai herbal medicine Mitragyna speciosa. Eur. J. Pharmacol.
549, 63–70 (2006).
83. Henningfield, J. E. et al. Risk of death associated with kratom use compared to
opioids. Preventive Med. 128, 105851 (2019).
5
5
6. Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and
acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136,
84. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict
safer opioid analgesics. Cell 171, 1165–1175.e13 (2017).
10807–10813 (2014).
5
5
5
6
7. Leitch, J. A., McMullin, C. L., Mahon, M. F., Bhonoah, Y. & Frost, C. G.
Remote C6-selective ruthenium-catalyzed C–H alkylation of indole derivatives
via σ-activation. ACS Catal. 7, 2616–2623 (2017).
85. Johnson, T. A. et al. Identification of the first marine-derived opioid receptor
“balanced” agonist with a signaling profile that resembles the endorphins. ACS
Chem. Neurosci. 8, 473–485 (2017).
86. Hill, R. et al. The novel μ-opioid receptor agonist PZM21 depresses respiration
and induces tolerance to antinociception: PZM21 depresses respiration. Br. J.
Pharmacol. 175, 2653–2661 (2018).
87. Kliewer, A. et al. Phosphorylation-deficient G-protein-biased μ-opioid
receptors improve analgesia and diminish tolerance but worsen opioid side
effects. Nat. Commun. 10, 367 (2019).
88. Kliewer, A. et al. Morphine-induced respiratory depression is independent of
β‐arrestin2 signalling. Br. J. Pharmacol. 177, 2923–2931 (2020).
8. Gribble, G. W., Johnson, J. L. & Saulnier, M. G. Stereoselective reduction of
1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine with sodium
borohydride in trifluoeoacetic acid. Heterocycles 16, 2109–2114 (1981).
9. Okada, N., Misawa, K., Kitajima, M. & Takayama, H. Preparation of ethylene
glycol adducts at 2,3-positions of indoles with hypervalent iodine.
Heterocycles 74, 461–472 (2007).
0. Saito, Y., Segawa, Y. & Itami, K. para-C–H borylation of benzene derivatives
by a bulky iridium catalyst. J. Am. Chem. Soc. 137, 5193–5198 (2015).
N
A
T
U
R
E
C
O
M
M
U
N
I
C
A
T
I
O
N
S
|