Inorganic Chemistry
Article
(29) Nobuta, T.; Xiao, G.; Ghislieri, D.; Gilmore, K.; Seeberger, P.
H. Continuous and convergent access to vicinyl amino alcohols.
Chem. Commun. 2015, 51, 15133−15136.
(30) Tobisch, S. Computational Mechanistic Elucidation of the
Intramolecular Aminoalkene Hydroamination Catalysed by Iminoa-
nilide Alkaline-Earth Compounds. Chem. - Eur. J. 2015, 21, 6765−
6779.
(31) Aramesh, N.; Yadollahi, B.; Mirkhani, V. Fe(III) substituted
Wells−Dawson type polyoxometalate: An efficient catalyst for ring
opening of epoxides with aromatic amines. Inorg. Chem. Commun.
2013, 28, 37−40.
(32) Chini, M.; Crotti, P.; Macchia, F. Metal salts as new catalysts
for mild and efficient aminolysis of oxiranes. Tetrahedron Lett. 1990,
31, 4661−4664.
(48) Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal−organic
frameworks for drug delivery: a conventional platform with new
promise. J. Mater. Chem. B 2018, 6, 707−717.
(49) Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-
Hazeleger, M. C.; Rothenberg, G.; Tanase, S. High proton
conductivity in cyanide-bridged metal−organic frameworks: under-
standing the role of water. J. Mater. Chem. A 2015, 3, 22347−22352.
(50) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y.
Applications of metal−organic frameworks in heterogeneous supra-
molecular catalysis. Chem. Soc. Rev. 2014, 43, 6011−6061.
(51) Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Metal−Organic
Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117,
8129−8176.
(52) Shen, L.; Liang, R.; Luo, M.; Jing, F.; Wu, L. Electronic effects
of ligand substitution on metal−organic framework photocatalysts:
the case study of UiO-66. Phys. Chem. Chem. Phys. 2015, 17, 117−
121.
(53) Hoang, L. T. M.; Ngo, L. H.; Nguyen, H. L.; Nguyen, H. T. H.;
Nguyen, C. K.; Nguyen, B. T.; Ton, Q. T.; Nguyen, H. K. D.;
Cordova, K. E.; Truong, T. An azobenzene-containing metal−organic
framework as an efficient heterogeneous catalyst for direct amidation
of benzoic acids: synthesis of bioactive compounds. Chem. Commun.
2015, 51, 17132−17135.
(54) Doan, T. L. H.; Dao, T. Q.; Tran, H. N.; Tran, P. H.; Le, T. N.
An efficient combination of Zr-MOF and microwave irradiation in
catalytic Lewis acid Friedel−Crafts benzoylation. Dalton Trans. 2016,
45, 7875−7880.
(55) Cirujano, F. G.; Corma, A.; Xamena, F. X. L. I. Zirconium-
containing metal organic frameworks as solid acid catalysts for the
esterification of free fatty acids: Synthesis of biodiesel and other
compounds of interest. Catal. Today 2015, 257, 213−220.
(56) Yang, Y.; Yao, H.-F.; Xi, F.-G.; Gao, E.-Q. Amino-functionalized
Zr(IV) metal−organic framework as bifunctional acid−base catalyst
for Knoevenagel condensation. J. Mol. Catal. A: Chem. 2014, 390,
198−205.
(57) Doan, T. L. H.; Dao, T. Q.; Tran, H. N.; Tran, P. H.; Le, T. N.
An efficient combination of Zr-MOF and microwave irradiation in
catalytic Lewis acid Friedel−Crafts benzoylation. Dalton Trans. 2016,
45, 7875−7880.
(58) Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks-
(MOFs): Routes to Various MOF Topologies, Morphologies, and
Composites. Chem. Rev. 2012, 112, 933−969.
(59) Das, A.; Das, S.; Trivedi, V.; Biswas, S. A dual functional MOF-
based fluorescent sensor for intracellular phosphate and extracellular
4-nitrobenzaldehyde. Dalton Trans. 2019, 48, 1332−1343.
(60) Das, A.; Banesh, S.; Trivedi, V.; Biswas, S. Extraordinary
sensitivity for H2S and Fe(III) sensingin aqueous medium by Al-MIL-
53-N3 metal−organic framework: in vitro and in vivo applications of
H2S sensing. DaltonTrans. 2018, 47, 2690−2700.
(61) Das, A.; Anbu, N.; SK, M.; Dhakshinamoorthy, A.; Biswas, S.
Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal−Organic-
Framework as Hydrogen Bonding Heterogeneous Catalyst forFrie-
del−Crafts Alkylation. Inorg. Chem. 2019, 58, 5163−5172.
(62) Mallakpour, S.; Zadehnazari, A. Molten salt-supported
polycondensation of optically active diacid monomers with an
aromatic thiazole-bearing diamine using microwave irradiation. J.
Adv. Res. 2014, 5, 311−318.
(33) Papini, A.; Ricci, A.; Taddei, M.; Seconi, G.; Dembech, P.
Regiospecific conversion of oxiranes, oxetanes, and lactones into
difunctional nitrogen compounds via aminosilanes and amino-
stannanes. J. Chem. Soc., Perkin Trans. 1 1984, 0, 2261−2265.
(34) Rani, P.; Srivastava, R. Nucleophilic addition of amines,
alcohols, and thiophenol with epoxide/olefin using highly efficient
zirconium metal organic framework heterogeneous catalyst. RSC Adv.
2015, 5, 28270−28280.
(35) Deyrup, J. A.; Moyer, C. L. 1,2,3-oxathiazolidines. Heterocyclic
system. J. Org. Chem. 1969, 34, 175−179.
(36) Otera, J.; Niibo, Y.; Tatsumi, N.; Nozaki, H. Organotin
phosphate condensates as a catalyst of selective ring-opening of
oxiranes by alcohols. J. Org. Chem. 1988, 53, 275−278.
(37) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal−
Organic Frameworks. Chem. Rev. 2012, 112, 673−674.
(38) Bradshaw, D.; Garai, A.; Huo, J. Metal−organic framework
growth at functional interfaces: thin films and composites for diverse
applications. Chem. Soc. Rev. 2012, 41, 2344−2381.
(39) Karmakar, A.; Desai, A. V.; Ghosh, S. K. Ionic metal-organic
frameworks (iMOFs): Design principles and applications. Coord.
Chem. Rev. 2016, 307, 313−341.
(40) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.;
Verpoort, F. Metal−organic frameworks: versatile heterogeneous
catalysts for efficient catalytic organic transformations. Chem. Soc. Rev.
2015, 44, 6804−6849.
(41) Pal, T. K.; De, D.; Senthilkumar, S.; Neogi, S.; Bharadwaj, P. K.
A Partially Fluorinated, Water-Stable Cu(II)−MOF Derived via
Transmetalation: Significant Gas Adsorption with High CO2
Selectivity and Catalysis of Biginelli Reactions. Inorg. Chem. 2016,
55, 7835−7842.
(42) Gupta, A. K.; De, D.; Tomar, K.; Bharadwaj, P. K. A Cu(II)
metal−organic framework with significant H2 and CO2 storage
capacity and heterogeneous catalysis for the aerobic oxidative
amination of C(sp3)−H bonds and Biginelli reactions. Dalton Trans.
2018, 47, 1624−1634.
(43) Gole, B.; Sanyal, U.; Banerjee, R.; Mukherjee, P. S. High
Loading of Pd Nanoparticles by Interior Functionalization of MOFs
for Heterogeneous Catalysis. Inorg. Chem. 2016, 55, 2345−2354.
(44) Sharma, S.; Ghosh, S. K. Metal−Organic Framework-Based
Selective Sensing of Biothiols via Chemidosimetric Approach in
Water. ACS Omega 2018, 3, 254−258.
(45) Das, A.; Biswas, S. A multi-responsive carbazole-functionalized
Zr(IV)-based metal-organic framework for selective sensing of
Fe(III), cyanide and p-nitrophenol. Sens. Actuators, B 2017, 250,
121−131.
(46) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.;
Ghosh, S. K. Metal−organic frameworks: functional luminescent and
photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46,
3242−3285.
(47) Karmakar, A.; Kumar, N.; Samanta, P.; Desai, A. V.; Ghosh, S.
K. A Post-Synthetically Modified MOF for Selective and Sensitive
Aqueous-Phase Detection of Highly Toxic Cyanide Ions. Chem. - Eur.
J. 2016, 22, 864−868.
(63) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building
Brick Forming Metal Organic Frameworks with Exceptional Stability.
J. Am. Chem. Soc. 2008, 130, 13850−13851.
(64) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M.
H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the Complex
Structure of UiO-66 Metal Organic Framework: A Synergic
Combination of Experiment and Theory. Chem. Mater. 2011, 23,
1700−1718.
(65) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke,
M.; Behrens, P. Modulated Synthesis of Zr-Based Metal−Organic
J
Inorg. Chem. XXXX, XXX, XXX−XXX