Inorganic Chemistry
(TDOS) and projected density of state (PDOS),
Article
(12) Karkas, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B.
Artificial photosynthesis: molecular systems for catalytic water
oxidation. Chem. Rev. 2014, 114, 11863−2001.
schematic diagram, EPR testing, and the activity contrast
with the values reported in the literature (PDF)
̈
̈
(13) Karkas, M. D.; Åkermark, T.; Chen, H.; Sun, J.; Åkermark, B. A
tailor-made molecular ruthenium catalyst for the oxidation of water
and its deactivation through poisoning by carbon monoxide. Angew.
Chem., Int. Ed. 2013, 52, 4189−4193.
AUTHOR INFORMATION
■
(14) Thompson, D. W.; Ito, A.; Meyer, T. J. [Ru(bpy)3]2+ and other
remarkable metal-to-ligand charge transfer (MLCT) excited states.
Pure Appl. Chem. 2013, 85, 1257−1305.
Corresponding Author
4994406. Telephone:+86-13948315232.
(15) Volpe, A.; Sartorel, A.; Tubaro, C.; Meneghini, L.; Di Valentin,
M.; Graiff, C.; Bonchio, M. N-heterocyclic dicarbene iridium(III)
catalysts enabling water oxidation under visible light irradiation. Eur. J.
Inorg. Chem. 2014, 2014, 665−675.
(16) DePasquale, J.; Nieto, I.; Reuther, L. E.; Herbst-Gervasoni, C.
J.; Paul, J. J.; Mochalin, V.; Zeller, M.; Thomas, C. M.; Addison, A.
W.; Papish, E. T. Iridium dihydroxybipyridine complexes show that
ligand deprotonation dramatically speeds rates of catalytic water
oxidation. Inorg. Chem. 2013, 52, 9175−9183.
(17) McAlpin, J. G.; Surendranath, Y.; Dinca, M.; Stich, T. A.;
Stoian, S. A.; Casey, W. H.; Nocera, D. G.; Britt, R. D. EPR evidence
for Co(IV) species produced during water oxidation at neutral pH. J.
Am. Chem. Soc. 2010, 132, 6882−6883.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is financially supported by the National Natural
Science Foundation of China (Grant Numbers 21777078 and
21567017) and the Project of Research and Development of
the Applied Technology for Inner Mongolia (201702112).
(18) Okunaka, S.; Tokudome, H.; Abe, R. Z-scheme water splitting
into H2 and O2 under visible light over photocatalyst panels consisting
of Rh-doped SrTiO3 and BiVO4 fine particles. Chem. Lett. 2016, 45,
57−59.
REFERENCES
■
(1) Ding, E.; Li, A.; Liu, H.; Liu, W.; Chen, F.; Li, T.; Wang, B.
Facile synthesis of ultrathin two-dimensional nanosheets-constructed
MCo2O4 (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic
oxygen evolution. Nanoscale 2018, 10, 3871−3876.
(19) Nakada, A.; Saeki, A.; Higashi, M.; Kageyama, H.; Abe, R.
́
Abe.Two-step synthesis of Sillen−Aurivillius type oxychlorides to
enhance their photocatalytic activity for visible-light-induced water
splitting. J. Mater. Chem. A 2018, 6, 10909−10917.
́
(2) Reza Gholipour, M.; Dinh, C. T.; Beland, F.; Do, T. O.
Nanocomposite heterojunctions as sunlight-driven photocatalysts for
hydrogen production from water splitting. Nanoscale 2015, 7, 8187−
8208.
(3) Melvin, A. A.; Illath, K.; Das, T.; Raja, T.; Bhattacharyya, S.;
Gopinath, C. S. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst
for overall solar water splitting: role of interfaces. Nanoscale 2015, 7,
13477−13488.
(20) Oropeza, F. E.; Egdell, R. G. Control of valence states in Rh-
doped TiO2 by Sb co-doping: A study by high resolution X-ray
photoemission spectroscopy. Chem. Phys. Lett. 2011, 515, 249−53.
(21) Calatayud, J. M.; Balbuena, J.; Cruz-Yusta, M.; Martín, F.;
́
́
Pardo, P.; Sanchez, L.; Alarcon, J. Mesocrystalline Cr and Sb-codoped
anatase visible-light-driven photocatalyst. Ceram. Int. 2018, 44, 8232−
8241.
(4) Maeda, K.; Higashi, M.; Lu, D.; Abe, R.; Domen, K. Efficient
nonsacrificial water splitting through two-step photoexcitation by
visible light using a modified oxynitride as a hydrogen evolution
photocatalyst. J. Am. Chem. Soc. 2010, 132, 5858−5868.
(5) Xie, Y. P.; Wang, G. S. Visible light responsive porous
Lanthanum-doped Ag3PO4 photocatalyst with high photocatalytic
water oxidation activity. J. Colloid Interface Sci. 2014, 430, 1−5.
(6) Yu, F. T.; Cui, S. C.; Li, X.; Peng, Y. Y.; Yu, Y.; Yun, K.; Zhang,
S. C.; Li, J.; Liu, J. G.; Hua, J. L. Effect of anchoring groups on N-
annulated perylene-based sensitizers for dye-sensitized solar cells and
photocatalytic H2 evolution. Dyes Pigm. 2017, 139, 7−18.
(7) Ma, G.; Chen, S.; Kuang, Y.; Akiyama, S.; Hisatomi, T.;
Nakabayashi, M.; Shibata, N.; Katayama, M.; Minegishi, T.; Domen,
K. Visible light-driven z-scheme water splitting using oxysulfide H2
evolution photocatalysts. J. Phys. Chem. Lett. 2016, 7, 3892−3896.
(8) Mao, Z.; Chen, J.; Yang, Y.; Wang, D.; Bie, L.; Fahlman, B. D.
novel g-C3N4/CoO nanocomposites with significantly enhanced
visible-light photocatalytic activity for H2 evolution. ACS Appl.
Mater. Interfaces 2017, 9, 12427−12435.
(9) Chen, Y.; Guo, L. Highly efficient visible-light-driven photo-
catalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs
(titanate nanotubes) nanocomposites without noble metals. J. Mater.
Chem. 2012, 22, 7507−7514.
(10) Wang, D.; Li, R.; Zhu, J.; Shi, J.; Han, J.; Zong, X.; Li, C.
Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an
oxidation cocatalyst: essential relations between electrocatalyst and
photocatalyst. J. Phys. Chem. C 2012, 116, 5082−5089.
(22) Ma, S. S. K.; Maeda, K.; Hisatomi, T.; Tabata, M.; Kudo, A.;
Domen, K. A redox-mediator-free solar-driven Z-scheme water-
splitting system consisting of modified Ta3N5 as an oxygen-evolution
photocatalyst. Chem. - Eur. J. 2013, 19, 7480−74866.
(23) Zhang, L.; Xu, T.; Zhao, X.; Zhu, Y. Controllable synthesis of
Bi2MoO6 and effect of morphology and variation in local structure on
photocatalytic activities. Appl. Catal., B 2010, 98, 138−146.
(24) Zhou, F.; Shi, R.; Zhu, Y. Significant enhancement of the visible
photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by
graphene hybridization. J. Mol. Catal. A: Chem. 2011, 340, 77−82.
(25) Wang, Z.; Huo, Y.; Zhang, J.; Lu, C.; Dai, K.; Liang, C.; Zhu, G.
Facile preparation of two-dimensional Bi2MoO6@Ag2MoO4 core-
shell composite with enhanced visible light photocatalytic activity. J.
Alloys Compd. 2017, 729, 100−108.
(26) Wu, Y. H.; Song, M. T.; Wang, Q. J.; Wang, T.; Wang, X. A
highly selective conversion of toxic nitrobenzene to nontoxic
aminobenzene by Cu2O/Bi/Bi2MoO6. Dalton Trans. 2018, 47,
8794−8800.
(27) Wang, P. F.; Ao, Y. H.; Wang, C.; Hou, J.; Qian, J. A one-pot
method for the preparation of graphene-Bi2MoO6 hybrid photo-
catalysts that are responsive to visible-light and have excellent
photocatalytic activity in the degradation of organic pollutants.
Carbon 2012, 50, 5256−5264.
(28) Di, J.; Xia, J. X.; Ji, M. X.; Li, H. P.; Xu, H.; Li, H. M.; Chen, R.
The synergistic role of carbon quantum dots for the improved
photocatalytic performance of Bi2MoO6. Nanoscale 2015, 7, 11433−
11443.
(29) Hou, J.; Cheng, H.; Takeda, O.; Zhu, H. Unique 3D
heterojunction photoanode design to harness charge transfer for
efficient and stable photoelectrochemical water splitting. Energy
Environ. Sci. 2015, 8, 1348−1357.
(11) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.;
Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; Liu, Y.;
Withers, R. L. An orthophosphate semiconductor with photo-
oxidation properties under visible-light irradiation. Nat. Mater.
2010, 9, 559−564.
J
Inorg. Chem. XXXX, XXX, XXX−XXX