3558
T. S. Ribeiro et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3555–3558
Table 1. Growth inhibition of T. cruzi (epimastigotes and amastigotes)
for benznidazole, piperine and its derivatives
References and notes
1. Semler, U.; Gross, G. G. Phytochemistry 1988, 27, 1566.
2. Ikan, R. In Natural Products: A Laboratory Guide, 2nd
ed.; Academic Press: 1991; pp 233–238.
3. de Paula, V. F.; Barbosa, L. C. D.; Demuner, A. J.; Pilo-
Veloso, D.; Picanco, M. C. Pest Manag. Sci. 2000, 56, 168.
4. Kiuchi, F.; Nakamura, N.; Tsuda, Y.; Kondo, K.;
Yoshimura, H. Chem. Pharm. Bull. 1988, 36, 1452.
5. Koul, S.; Koul, J. L.; Taneja, S. C.; Dhar, K. L.; Jamwal,
D. S.; Singh, K.; Reen, R. K.; Sing, J. Bioorg. Med. Chem.
2000, 8, 251.
6. Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.;
Jha, A.; Tyagi, O. D.; Prasad, A. K.; Wengel, J.; Olsen, C.
E.; Boll, P. M. Phytochemistry 1997, 46, 597.
7. Tsukamoto, S.; Cha, B.-C.; Ohta, T. Tetrahedron 2002, 58,
1667.
8. Kapil, A. Planta Med. 1993, 59, 474.
9. Raay, B.; Medda, S.; Mukhopadhyay, S.; Basu, M. K.
Indian J. Biochem. Biophys. 1999, 36, 248.
Compound
Epimastigotes IC50 (lM) Amastigotes IC50 (lM)
1
7.36
>96.52
10.67
4.91
NTa
2
3
7.40
2.58
11.52
9.63
NT
9
2.20
19.41
17.49
11
12
13
14
15
16
17
18
19
22
>114.67
>83.33
>81.43
>65.61
14.85
NT
NT
NT
7.77
5.71
NT
56.13
>83.33
>95.78
NT
a NT: Not tested.
10. Moncayo, A. Mem. Inst. Oswaldo Cruz 2003, 98, 577.
11. Coura, J. R.; DeCastro, S. L. Mem. Inst. Oswaldo Cruz
2002, 97, 3.
12. Cordell, G. A. Phytochemistry 2000, 463.
13. Mann, J. In Murder, Magic, and Medicine; Oxford
University Press: England, 1992; pp 82–96.
14. Gomes, D. C. F.; Alegrio, L. V.; Lima, M. E. F.; Leon, L. L.;
ꢀ
Araujo, C. A. C. Arzneim.-Forsch./Drug Res. 2002, 52, 120.
15. Araujo-Junior, J. X.; Da-Cunha, E. V. L.; Chaves, M. C.
than epimastigotes. The apparently higher potency on
amastigotes may be explained by its preferential uptake
by tissue culture cells or by a greater capacity of intra-
cellular amastigotes to fluid-phase pinocytosis.28 Among
the derivatives prepared, acid 13 and ester 14 did not
show activity at the maximum dose on epimastigotes,
evidence for the need for a nitrogen-containing function
for activity. Amides 2, 15, 16, 19, and 22 were also
shown to be inactive against epimastigotes at the dosage
tested. Derivatives 2, 13–16, 19, and 22 were not eval-
uated against amastigotes. The loss of toxicity observed
for amide 2 clearly demonstrates the importance of the
extended carbon side chain in the original molecule,
corroborated by the maintenance of toxicity by piper-
ettine 3 against epimastigotes and amastigotes (Table 1).
Removal of the double bonds (derivative 11) did not
interfere significantly with activity, suggesting that
conjugation is not essential for trypanocidal activity.
Surprisingly, changing the piperidine moiety of the
natural product for diisopropyl (17) or morpholyl
groups (18) produces loss of activity on epimastigotes
but does not interfere significantly with toxicity against
intracellular amastigotes. Finally, reduction of the car-
bonylamide group of piperine gave the allylic amine 12,
which retained significant toxic effects against the par-
asites, showing that the carbonyl group is not important
for the toxic effect. In conclusion, we have synthesized a
series of piperine derivatives, which behave as potent
inhibitors of the proliferation of T. cruzi parasites, and
which may be considered suitable template compounds
for the design of new and more potent drugs for the
treatment of Chagas’ disease.
O.; Gray, A. I. Phytochemistry 1997, 44, 559.
ꢀ
16. Hudlicky, M. Reductions in Organic Chemistry; John
Wiley & Sons: New York, 1986; pp 1–3.
17. Szmuszkovice, J. J. Org. Chem. 1964, 29, 843.
18. Berardi, F.; Loiodice, F.; Frachiolla, G.; Calabufo, N. A.;
Perrone, R.; Tortorella, V. J. Med. Chem. 2003, 46, 2117.
19. Silva, E. F.; Canto-Cavalheiro, M. M.; Braz, V. R.; Cysne-
Finkelstein, L.; Leon, L. L.; Echevarria, A. Eur. J. Med.
Chem. 2002, 37, 979.
20. Loder, J. W.; Moorhous, A.; Russell, G. B. Austr. J.
Chem. 1969, 22, 1531.
21. Marianoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
22. Drug screening. Biological assays on Y-strain epimasti-
~
gotes (Fundacßao Oswaldo Cruz, RJ, Brazil) were per-
formed as previously described.23 Benznidazole 9 (Roche,
Rio de Janeiro, Brazil), piperine 1 and its derivatives
(Table 1) were stored as 10 mg mLÀ1 stock solutions in
dimethylsulfoxide (DMSO), and were serially diluted (1:2)
in medium before use (the concentrations of 0.76, 1.56,
3.125, 6.25, 12.5, and 25 lg mLÀ1 were used) in triplicate.
Experiments on the intracellular form of the parasite were
conducted on T. cruzi-infected (Y-strain) macrophages as
described before.23 The 50% inhibitory concentration
(IC50) values were determined by linear regression analysis.24
For cellular viability tests, peritoneal mouse macrophages
were treated with the indicated concentrations of com-
pounds for 72 h as described elsewhere.25
23. Saraiva, V. B.; Gibaldi, D.; Previato, J. O.; Mendoncßa-
Previato, L.; Bozza, M. T.; Freire-de-Lima, C. G.; Heise,
N. Antimicrob. Agents Chemother. 2002, 46, 3472.
24. Lux, H.; Heise, N.; Klenner, T.; Hart, D. T.; Opperdoes,
F. R. Mol. Biochem. Parasitol. 2000, 111, 1.
25. Delorenzi, J. C.; Freire-de-Lima, L.; Gattass, C. R.; Costa,
D. A.; He, L.; Kuehne, M. E.; Saraiva, E. M. B.
Antimicrob. Agents Chemother. 2002, 46, 2111.
Acknowledgements
Financial support from FAPERJ and fellowships from
Capes to T. S. Ribeiro and from CNPq to L. Freire-de-
Lima are gratefully acknowledged. We also thank Dr.
Christopher Jones (Laboratory for Molecular Structure,
NIBSC, Herts, UK) for critical reading of the manu-
script.
26. Neal, R. A.; Bueren, J. Trans. R. Soc. Trop. Med. Hyg.
1988, 82, 709.
ꢀ
27. Martınez-Dıaz, R. A.; Escario, J. A.; Nogal-Ruiz, J. J.;
Gomez-Barrio, A. Mem. Inst. Oswaldo Cruz 2001, 96, 53.
ꢀ
ꢀ
28. Soares, M. J.; de Souza, W. Parasitol. Res. 1991, 77, 461.