ChemComm
Communication
0 0
-(5 -acetylsulfanyl-2-methyl-5,2 -dithiophen-3-yl)-2-(2-methyl-
,2 -dithiophen-3-yl)perfluorocyclopentene also indicates the
1
5
0
23
presence of the barrier in the excited state energy surface.
In conclusion it was unequivocally verified that the cyclo-
reversion quantum yields of diarylethene derivatives, compounds
1
and 2, are dependent on the irradiation wavelengths and the
dependence correlates with the energy barrier in the excited state
energy surface.
This work was supported by the MEXT-Supported Program
for the Strategic Research Foundation at Private Universities.
Notes and references
1
H. D u¨ rr and H. Bouas-Laurent, Photochromism: Molecules and Systems,
Elsevier, Amsterdam, 2003.
Organic Photochromic and Thermochromic Compounds, ed. J. C. Crano
and R. J. Guglielmetti, Plenum Press, New York, 1999, vol. 1.
H. Bouas-Laurent and H. D u¨ rr, Pure Appl. Chem., 2001, 73, 639–665.
M. Irie, Chem. Rev., 2000, 100, 1685–1716.
2
Fig. 3 Schematic illustration of potential energy surfaces and the cyclo-
reversion reaction path. (c) and (o) mean closed- and open-ring isomers,
respectively.
3
4
5
J. B. Birks, Photophysics of Aromatic Molecules, Wiley Interscience,
London, 1970.
6
(a) H. G. Heller and J. R. Langan, J. Chem. Soc., Perkin Trans. 2, 1981,
341–343; (b) V. Wintgens, L. J. Johnston and J. C. Scaiano, J. Am.
0
.29 at 515 nm and 0.018 at 562 nm, respectively. These values
Chem. Soc., 1988, 110, 511–517.
M. Irie and M. Mohri, J. Org. Chem., 1988, 53, 803–808.
8 (a) M. Maafi and R. G. Brown, J. Photochem. Photobiol., A, 2007, 187,
319–324; (b) M. Maafi, Phys. Chem. Chem. Phys., 2010, 12, 13248–13254.
J. Ern, A. T. Bens, H.-D. Martin, K. Kuldova, H. P. Trommsdorff and
1
4–16
are close to previously reported values (0.35 and 0.015).
7
1
7–19
According to theoretical calculations
and femtosecond
of 6p electrocyclic systems, the
cycloreversion reaction is considered to proceed as shown in
2
0,21
laser photolysis studies
9
C. Kryschi, J. Phys. Chem. A, 2002, 106, 1654–1660.
Fig. 3. Upon irradiation with visible light the closed-ring isomer is 10 A. R. Santos, R. Ballardini, P. Belser, M. T. Gandolfi, V. M. Iyer and
L. Moggi, Photochem. Photobiol. Sci., 2009, 8, 1734–1742.
1 G. Pariani, A. Bianco, R. Castagna and C. Bertarelli, J. Phys. Chem. A,
excited to the allowed 1B Franck–Condon state (1B FC(c)). The
excited-state wavepacket moves away from the Franck–Condon
1
2011, 115, 12184–12193.
region along the 1B surface and falls down from the 1B to the 12 M. Hanazawa, R. Sumiya, Y. Horikawa and M. Irie, J. Chem. Soc.,
Chem. Commun., 1992, 206–207.
3 H. Jean-Ruel, R. R. Cooney, M. Gao, C. Lu, M. A. Kochman, C. A. Morrison
and R. J. Dwayne Miller, J. Phys. Chem. A, 2011, 115, 13158–13168.
lower 2A surface via the 1B/2A conical intersection (1B/2A CI(c)) in
1
20,21
B100 fs.
The molecules excited with light at shorter wave-
lengths having vibrational excess energy on the 2A surface go over 14 K. Uchida, E. Tsuchida, Y. Aoi, S. Nakamura and M. Irie, Chem. Lett.,
1
999, 63–64.
5 M. Irie, K. Sakemura, M. Okinaka and K. Uchida, J. Org. Chem., 1995,
0, 8305–8309.
16 K. Shibata, K. Muto, S. Kobatake and M. Irie, J. Phys. Chem. A, 2002,
06, 209–214.
the energy barrier 2ATS more easily and reach the 2A/1A conical
intersection (2A/1A CI(o)), where fast deactivation to the ground
state takes place and thus the open-isomers are formed.
The above route suggests that thermal activation or excess
kinetic energy is required for the molecules to go over the
1
6
1
1
7 M. Garavelli, C. S. Page, P. Celani, M. Olivucci, W. E. Schmid, S. A.
Trushin and W. Fuss, J. Phys. Chem. A, 2001, 105, 4458–4469.
barrier 2ATS. The irradiation wavelength dependence of the 18 M. Boggio-Pasqua, M. Ravaglia, M. J. Bearpark, M. Garavelli and
M. A. Robb, J. Phys. Chem. A, 2003, 107, 11139–11152.
cycloreversion quantum yields is ascribed to the energy barrier
1
9 Y. Asano, A. Murakami, T. Kobayashi, A. Goldberg, D. Guillaumont,
S. Yabushita, M. Irie and S. Nakamura, J. Am. Chem. Soc., 2004, 126,
12112–12120.
0 K. Kosma, S. A. Trushin, W. Fuß and W. E. Schmid, Phys. Chem.
Chem. Phys., 2009, 11, 172–181.
on the 2A surface. The slope of the photon energy dependence of
the quantum yields correlates with the energy difference between
E(2Ac) and E(2Ao). When E(2Ac) ꢀ E(2Ao) is negative such as
compound 2, the barrier is considered to be large, while it is
2
2
1 C. L. Ward and C. G. Elles, J. Phys. Chem. Lett., 2012, 3, 2995–3000.
2
2
small when E(2Ac) ꢀ E(2Ao) is positive such as compound 1.
22 S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano,
A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake
and M. Irie, J. Phys. Org. Chem., 2007, 20, 821–829.
3 D. Duli ´c , T. Kudernac, A. Pu ˇz ys, B. L. Feringa and B. J. van Wees,
Adv. Mater., 2007, 19, 2898–2902.
The large energy barrier results in a large slope of the photon-
energy dependence of the quantum yield. The temperature
dependence of the cycloreversion quantum yield observed for
2
3930 | Chem. Commun., 2014, 50, 3928--3930
This journal is ©The Royal Society of Chemistry 2014