reaction of CH
3
C(O)O
2
with HO
2
radicals, yielding a certain
1
16 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
17 P. D. Lightfoot, R. Lesclaux and B. Veyret, J. Phys. Chem., 1990,
4, 700–707.
amount of OH radicals, as proposed recently by Hasson et al.
The values obtained in this work for the rate constant k (k =
9
1
1
1
8 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr,
M. J. Rossi and J. Troe, J. Phys. Chem. Ref. Data, 1999, 28,
191–393.
ꢂ11
3
cm molecule
ꢂ1 ꢂ1
(
1.50 ꢀ 0.08) ꢁ 10
s at 298 K) and for the
branching ratio b (O ) leading to the formation of ozone
1
3
1
2
2
9 H. Niki, P. D. Maker, C. M. Savage and L. P. Breitenbach, J.
Phys. Chem., 1985, 89, 588–591.
0 M. Bartels, K. Hoyermann and U. Lange, Ber. Bunsen-Ges. Phys.
Chem., 1989, 93, 423.
1 W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J.
Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J.
Molina, NASA Conf. Publ., 1997, 97–4.
(
b (O ) = (0.20 ꢀ 0.01)) are in excellent agreement with the
12
1
3
values previously reported by Tomas et al. (k
1
= (1.42 ꢀ
ꢂ11
3
ꢂ1 ꢂ1
s
0
.07) ꢁ 10
and those recommended by the review of Tyndall et al., as
the new value of g (OH) determined in this work (g
(OH) o
.10) have only a minor effect on the determination of k and
(O ). Quantum chemistry calculations confirm the results
cm molecule
1 3
and b (O
) = (0.20 ꢀ 0.02))
1
3
1
1
0
1
2
2 B. J. Finlayson-Pitts and J. N. Pitts Jr, Atmospheric Chemistry,
Wiley and Sons, NY, 1986.
b
1
3
2
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.
C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghava-
chari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A.
Pople, Gaussian 03, (Revision C.02), Gaussian, Inc., Wallingford
CT, 2004.
obtained experimentally. Therefore, it is difficult to explain the
difference between our observations and that reported by
1
Hasson et al. even if their system only allows the detection
and quantification of stable final products and not all the
intermediates (CH C(O)O , HO , CH O and C H OH if
3
2
2
3
2
6
6
formed) as detailed in this work. In conclusion, the present
study demonstrates that the CH C(O)O is still pre-
3
2
þ HO
2
dominantly a radical chain termination reaction in the tropo-
spheric ozone chain formation processes.
Acknowledgements
The authors wish to thank R. Lesclaux (University of
Bordeaux) for helpful discussions, and the French National
Programme for Atmospheric Chemistry for financial support.
M.T.R. and J.C.R. wish to thank the IDRIS-CNRS Center
2
4 F. Caralp, P. Devolder, C. Fittschen, N. Gomez, H. Hippler, R.
Mereau, M. T. Rayez, F. Striebel and B. Viskolcz, Phys. Chem.
´
(
Orsay, France) for computer facilities.
Chem. Phys., 1999, 1, 2935–2944.
5 L. Vereecken and J. Peeters, J. Phys. Chem. A, 1999, 103,
2
2
2
1768–1775.
6 R. Mereau, M. T. Rayez, F. Caralp and J. C. Rayez, Phys. Chem.
References
´
Chem. Phys., 2000, 2, 3765–3772.
1
2
3
4
5
6
7
8
9
A. S. Hasson, G. S. Tyndall and J. J. Orlando, J. Phys. Chem. A,
004, 108, 5979–5989.
H. Satsumabayashi, H. Kurita, Y. S. Chang, G. R. Carmichael and
H. Ueda, Atmos. Environ., 1995, 29, 255–266.
E. L. Viskari, M. Vartiainen and P. Pasanen, Atmos. Environ.,
7 D. Johnson, S. Raoult, M. T. Rayez, J. C. Rayez and R. Lesclaux,
Phys. Chem. Chem. Phys., 2002, 4, 4678–4686.
2
28 S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, R. E.
Huie, V. L. Orkin, A. R. Ravishankara, C. E. Kolb, M. J. Molina,
G. K. Moortgat and B. J. Finlayson-Pitts, Chemical Kinetics and
Photochemical Data for Use in Atmospheric Studies: Evaluation
No. 11, NASA Jet Propulsion Laboratory Publication 02-25, 2003.
2000, 34, 917–923.
H. J. Beine, D. A. Jaffe, J. A. Hering, J. A. Kelley, T. Krognes and
F. Stordal, J. Atmos. Chem., 1997, 27, 127–153.
A. Borbon, P. Coddeville, N. Locoge and J. C. Galloo, Chemo-
sphere, 2004, 57, 931–942.
I. Villanueva-Fierro, C. J. Popp and R. S. Martin, Atmos. Environ.,
2
9 J. Lee, C. J. Chen and J. W. Bozzelli, J. Phys. Chem. A, 2002, 106,
7155–7170.
30 R. J. Blint and M. D. Newton, J. Chem. Phys., 1973, 59,
6220–6228.
2004, 38, 249–260.
3
3
1 K. Broch Mathisen, O. Gropen, P. N. Skancke and U. Wahlgren,
Acta Chem. Scand. Ser. A, 1983, 37, 817–822.
2 K. Broch Mathisen and E. M. Per Siegbahn, Chem. Phys., 1984,
90, 225–230.
M. Possanzini, V. Di Palo, M. Petricca, R. Fratarcangeli and D.
Brocco, Atmos. Environ., 1996, 30, 3757–3764.
M. F. Mohamed, D. Kang and V. P. Aneja, Chemosphere, 2002,
4
7, 863–882.
G. K. Moortgat, B. Veyret and R. Lesclaux, Chem. Phys. Lett.,
989, 160, 443–447.
0 C. M. Roehl, D. Bauer and G. K. Moortgat, J. Phys. Chem., 1996,
00, 4038–4047.
33 M. A. Vincent and I. H. Hillier, J. Phys. Chem. A, 1995, 99,
3109–3113.
34 A. J. C. Varandas and H. G. Yu, Mol. Phys., 1997, 91, 301–318.
1
1
1
1
1
3
5 P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D.
Hayman, M. Jenkin, G. K. Moortgat and F. Zabel, Atmos.
Environ., Part A, 1992, 26, 1805–1964.
1
1 M. A. Crawford, T. J. Wallington, J. J. Szente and M. M. Maricq,
J. Phys. Chem. A, 1999, 103, 365–378.
2 A. Tomas, E. Villenave and R. Lesclaux, J. Phys. Chem. A, 2001,
36 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr,
M. J. Rossi and J. Troe, J. Phys. Chem. Ref. Data, 1997, 26,
521–1011.
105, 3505–3514.
3 G. S. Tyndall, R. A. Cox, C. Granier, R. Lesclaux, G. K.
Moortgat, M. J. Pilling, A. R. Ravishankara and T. J. Wallington,
J. Geophys. Res., 2001, 106, 12157–12182.
3
7 T. H. Lay, J. W. Bozzelli and J. H. Seinfeld, J. Phys. Chem., 1996,
00, 6543–6554.
1
3
8 S. Raoult, M. T. Rayez, J. C. Rayez and R. Lesclaux, Phys. Chem.
Chem. Phys., 2004, 6, 2245–2253.
1
4 M. P. Sulbaek Andersen, C. Stenby, O. J. Nielsen, M. D. Hurley, J.
C. Ball, T. J. Wallington, J. W. Martin, D. A. Ellis and S. A.
Mabury, J. Phys. Chem. A, 2004, 108, 6325–6330.
5 O. Sokolov, M. D. Hurley, T. J. Wallington, E. W. Kaiser, J. Platz,
O. J. Nielsen, F. Berho and R. Lesclaux, J. Phys. Chem. A, 1998,
39 E. Villenave, R. Lesclaux, S. Seefeld and W. R. Stockwell, J.
Geophys. Res., 1998, 103, 25273–25285.
40 E. Villenave and R. Lesclaux, J. Phys. Chem., 1996, 100,
1
1
4372–14382.
102, 10671–10681.
This journal is ꢃc the Owner Societies 2006
Phys. Chem. Chem. Phys., 2006, 8, 2163–2171 | 2171