unambiguous assignment of 2a and 2b. Thus, despite the nature
of these Ni(III)–oxygen species is not entirely clear, their key role
in oxidation reaction has been clearly established.
We gratefully acknowledge financial support of this work
from the Cluster of Excellence ‘‘Unifying Concepts in Catalysis’’
(EXC 314/1), Berlin. We also thank Dr E. Bill, Mr F. Reikowski,
and Prof. Dr R. Stober for measurement and interpretation of
¨
EPR data.
Notes and references
1 (a) C. Krebs, D. G. Fujimori, C. T. Walsh and J. M. Bollinger,
Acc. Chem. Res., 2007, 40, 484; (b) J. T. Groves, J. Inorg. Biochem.,
2006, 100, 434; (c) In Cytochrome P450 Structure Mechanisms and
Biochemistry, ed. J. T. Groves, Y. Z. Han and P. R. Ortiz de
Montellano, Plenum, New York, 1995, vol. 1, p. 3; (d) A. Decker
and E. I. Solomon, Curr. Opin. Chem. Biol., 2005, 9, 152.
2 J. Hohenberger, K. Ray and K. Meyer, Nat. Commun., 2012, DOI:
10.1038/ncomms1718.
3 (a) L. Que, Jr., Acc. Chem. Res., 2007, 40, 493; (b) W. Nam, Acc.
Chem. Res., 2007, 40, 522; (c) L. Que, Jr. and W. B. Tolman, Nature,
2008, 455, 333; (d) P. J. Donoghue, J. Tehranchi, C. J. Cramer,
R. Sarangi, E. I. Solomon and W. B. Tolman, J. Am. Chem. Soc.,
2011, 133, 17602; (e) G. Yin, A. M. Danby, D. Kitko, J. D. Carter,
W. M. Scheper and D. H. Busch, J. Am. Chem. Soc., 2008, 130, 16245;
(f) X. Wu, M. S. Seo, K. M. Davis, Y.-M. Lee, J. Chen, K.-B. Cho,
Y. N. Pushkar and W. Nam, J. Am. Chem. Soc., 2011, 133, 20088;
(g) W. J. Song, M. S. Seo, S. D. George, T. Ohta, R. Song, M.-J. Kang,
T. Tosha, T. Kitagawa, E. I. Solomon and W. Nam, J. Am. Chem.
Soc., 2007, 129, 1268; (h) T. Taguchi, R. Gupta, B. L. Kaiser,
D. W. Boyce, V. K. Yachandra, W. B. Tolman, J. Yano,
M. P. Hendrich and A. S. Borovik, J. Am. Chem. Soc., 2012, 134, 1996.
4 (a) T. Nagataki, Y. Tachi and S. Itoh, Chem. Commun., 2006, 4016;
(b) M. Balamurugan, R. Mayilmurugan, E. Suresh and
M. Palaniandavar, Dalton Trans., 2011, 40, 9413; (c) T. Nagataki,
K. Ishii, Y. Tachi and S. Itoh, Dalton Trans., 2007, 1120; (d) X. Solans-
Monfort, J. L. G. Fierro, L. Hermosilla, C. Sieiro, M. Sodupe and
Fig. 2 Reactivity of 2 in oxo-transfer and C–H activation reactions.
(A) Plot of log k02 of 2a (2b) at ꢀ30 1C against C–H BDE of substrates.
Second-order rate constants, k2, were determined at ꢀ30 1C and then
adjusted for reaction stoichiometry to yield k02 based on the number of
equivalent target C–H bonds of substrates. The reaction with BNAH
was found to be too fast to be followed at ꢀ30 1C. Thus k2 for BNAH
was determined at ꢀ60 1C and adjusted for ꢀ30 1C by multiplying k2
by 8; the rate is considered to be doubled for every 10 1C rise in
temperature; (B) plots of the first-order rate constant (kobs) against the
concentration of DHA and DHA-d4; the point at zero-substrate
concentration corresponds to the rate-constant for the self-decay
of 2a (2b) (1.89 ꢁ 10ꢀ4
s
ꢀ1); (C) decay of the Ni(III) EPR feature at
ꢀ30 1C upon addition of PPh3 {[1-OTf]: 4 mM; [mCPBA]: 4 mM;
[PPh3]: 1.0 M}. In the inset is given the relative concentration of Ni(III)
(C/C0) vs. time calculated from the decay of EPR signals. The pseudo-first
order fit (kobs = 0.05 sꢀ1) of the decay is shown as a bold line.
´
R. Mas-Balleste, Dalton Trans., 2011, 40, 6868.
5 S. Yao and M. Driess, Acc. Chem. Res., 2012, 45, 276.
6 D. Schroder and H. Schwarz, Angew. Chem., Int. Ed., 1995, 34, 1973.
¨
7 (a) A. W. Pierpont and T. R. Cundari, Inorg. Chem., 2010, 49, 2038;
(b) Y. Shiota and K. Yoshizawa, J. Am. Chem. Soc., 2000, 122, 12317.
8 H. Wittmann, V. Raab, A. Schorm, J. Plackmeyer and
J. Sundermeyer, Eur. J. Inorg. Chem., 2001, 1937.
reactions (and not the 1-mCPBA species in Scheme 1) was
confirmed from the disappearance of the EPR features of 2a
and 2b with a pseudo-first order decay (Fig. 2C and Fig. S9,
ESIz) in the presence of PPh3 and DHA. The product analysis
of the resultant reaction solutions revealed that the decay of
the EPR signal was associated with the formation of triphenyl-
phosphineoxide (40%) from PPh3 reaction, and anthracene
(10%), and anthraquinone (10%) from DHA reaction.15
In conclusion, we have reported the generation of
Ni(III)–oxygen intermediates, 2a and 2b, during the reaction
of [NiII(TMG3tren)]2+ with mCPBA at low temperature.
Based on their ability to perform oxo-transfer reaction and
C–H activation with a rate-determining H-atom abstraction
process we propose a terminal Ni(III)–oxo/hydroxo assignment
for 2a and 2b. Although a number of Ni–dioxygen adducts
have been reported recently,16 high-valent nickel with a terminal
oxo/hydroxo unit has remained elusive till date. The difference
between 2a and 2b is, however, not clear at present. In spite of their
different spectroscopic properties (as evident from EPR studies) the
kinetics of their oxo-transfer and C–H activation reactions were
found to be comparable in the time-scale of UV-Vis and EPR
experiments. The difference in their EPR spectra may originate
from the difference in the protonation state (oxo vs. hydroxo) of the
terminal oxygen atom. However, further studies are needed for the
9 D. Maiti, D.-H. Lee, K. Gaoutchenova, C. Wurtele,
¨
M. C. Holthausen, A. A. N. Sarjeant, J. Sundermeyer,
S. Schindler and K. D. Karlin, Angew. Chem., Int. Ed., 2008, 47, 82.
10 (a) J. England, M. Martinho, E. R. Farquhar, J. R. Frisch, E. L.
Bominaar, E. Munck and L. Que Jr., Angew. Chem., Int. Ed., 2009,
¨
48, 3622; (b) J. England, Y. Guo, E. R. Farquhar, V. G. Young Jr.,
E. Munck and L. Que Jr., J. Am. Chem. Soc., 2010, 132, 8635.
¨
11 F. F. Pfaff, S. Kundu, M. Risch, S. Pandian, F. Heims,
I. Pryjomska-Ray, P. Haack, R. Metzinger, E. Bill, H. Dau,
P. Comba and K. Ray, Angew. Chem., Int. Ed., 2011, 50, 1711.
12 (a) K. Ray, S. M. Lee and L. Que, Jr., Inorg. Chim. Acta, 2008,
361, 1066; (b) M. R. Bukowski, K. D. Koehntop, A. Stubna,
E. L. Bominaar, J. A. Halfen, E. Munck, W. Nam and L. Que, Jr.,
¨
Science, 2005, 310, 1000.
13 (a) Y.-H. Huang, J.-B. Park, M. W. W. Adams and
M. K. Johnson, Inorg. Chem., 1993, 32, 375; (b) C.-M. Lee,
C.-H. Chen, F.-X. Liao, C.-H. Hu and G.-H. Lee, J. Am. Chem.
Soc., 2010, 132, 9256; (c) N. Yang, M. Reiher, M. Wang,
J. Harmer and E. C. Duin, J. Am. Chem. Soc., 2007, 129, 11028;
(d) M. Dey, J. Telser, R. C. Kunz, N. S. Lees, S. W. Ragsdale and
B. M. Hoffman, J. Am. Chem. Soc., 2007, 129, 11030.
14 The reaction with BNAH was found to be too fast to be followed
at ꢀ30 1C. Thus k2 for BNAH was determined at ꢀ60 1C and
adjusted for ꢀ30 1C by multiplying k2 by 8. Rate is approximately
considered to be doubled for every 10 1C rise in temperature.
15 Yields are reported based on the starting Ni(III) concentration.
16 (a) M. T. K. Emmons and C. G. Riordan, Acc. Chem. Res., 2007,
40, 618; (b) M. Suzuki, Acc. Chem. Res., 2007, 40, 609.
c
3732 Chem. Commun., 2012, 48, 3730–3732
This journal is The Royal Society of Chemistry 2012