2118 Journal of Chemical & Engineering Data, Vol. 53, No. 9, 2008
The heat capacity and standard enthalpy of formation of EMIES.
Thermochim. Acta 2006, 447 (2), 141–146.
(19) Ferna´ndez, A.; Torrecilla, J. S.; Garc´ıa, J.; Rodr´ıguez, F. Thermo-
physical Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate and
1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquds. J. Chem.
Eng. Data 2007, 52, 1979–1983.
respectively. Lastly, we are grateful to Alexandre Chapeaux for
his help with the NMR spectroscopy.
Supporting Information Available:
Experimental molar heat capacities of the systems water +
IL (Table S1 to S3); experimental excess enthalpies of the
systems water + IL (Tables S4 to S6); and NMR results of the
[emim][EtSO4] decomposition (Figure S1). This material is
(20) Garc´ıa-Miaja, G.; Troncoso, J.; Roman´ı, L. Density and Heat Capacity
as a Function of Temperature for Binary Mixtures of 1-Butyl-3-
methylpyridinium Tetrafluoroborate + Water, + Ethanol, and +
Nitromethane. J. Chem. Eng. Data 2007, 52, 2261–2265.
(21) Strechan, A. A.; Paulechka, Y. U.; Kabo, A. G.; Blokhin, A. V.; Kabo,
G. J. 1-Butyl-3-methylimidazolium Tosylate Ionic Liquid: Heat
Capacity, Thermal Stability, and Phase Equilibrium of Its Binary
mixtures with Water and Caprolactam. J. Chem. Eng. Data 2007, 52,
1791–1799.
Literature Cited
(22) Bandre´s, I.; Giner, B.; Artigas, H.; Royo, F. M.; Lafuente, C.
Thermophysic Comparative Study of Two Isomeric Pyridinium-Based
Ionic Liquids. J. Phys. Chem. B 2008, 112, 3077–3084.
(23) Da´vila, M. J.; Aparicio, S.; Alcalde, R.; Garc´ıa, B.; Leal, J. M. On
the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid.
Green Chem. 2007, 9, 221–232.
(24) Blokhin, A. V.; Paulechka, Y. U.; Strechan, A. A.; Kabo, G. J.
Physicochemical Properties, Structure, and Conformations of 1-Butyl-
3-methylimidazolium Bis(trifluoromethanesulfonyl)imide [C4mim]NTf2
Ionic Liquid. J. Phys. Chem. B 2008, 112, 4357–4364.
(25) Archer, D. G.; Widegren, J. A.; Kirklin, D. R.; Magee, J. W. Enthalpy
of solution of 1-octyl-3-methylimidazolium tetrafluoroborate in water
and in aqueous sodium fluoride. J. Chem. Eng. Data 2005, 50 (4),
1484–1491.
(26) Yang, J.-Z.; Zhang, Z.-H.; Fang, D.-W.; Li, J.-G.; Guan, W.; Tong, J.
Studies on enthalpy of solution for ionic liquid: The system of
1-methyl-3-ethylimidazolium tetrafluoroborate (EMIBF4). Fluid Phase
Equilib. 2006, 247, 80–83.
(27) Guan, W.; Wang, H.; Li, L.; Zhang, Q.-G.; Yang, J.-Z. Enthalpy of
solution of the ionic liquid BMIBF4 in water. Thermochim. Acta 2005,
437, 196–197.
(28) Guan, W.; Yang, J.-Z.; Li, L.; Wang, H.; Zhang, Q.-G. Thermo-
chemical properties of aqueous solution containing ionic liquids 1.
The heat of reaction mixed 1-methyl-3-butylimidazolium chloride with
InCl3. Fluid Phase Equilib. 2006, 239 (2), 161–165.
(29) Fang, D.-W.; Sun, Y.-C.; Wang, Z.-W. Solution Enthalpies of Ionic
Liquid 1-Hexyl-3-methylimidazolium Chloride. J. Chem. Eng. Data
2008, 53, 259–261.
(1) Rogers, R. D., Seddon, K. R., Eds. Ionic Liquids IIIB: Fundamen-
tals, Progress, Challenges, and Opportunities: Transformations and
Processes; ACS Symposium Series: Washington, DC, 2005, Vol.
902.
(2) Holbrey, J. D.; Reichert, W. M.; Reddy, R. G.; Rogers, R. D. Heat
Capacities of Ionic Liquids and Their Applications as Thermal
Fluids. In Ionic Liquids as Green SolVents; Rogers, R. D., Seddon,
K. R., Eds.; ACS Symposium Series: Washington, DC, 2003, Vol.
856.
(3) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.;
Brennecke, J. F. Thermophysical Properties of Imidazolium-Based
Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954–964.
(4) Kabo, G. J.; Blokhin, A. V.; Paulechka, Y. U.; Kabo, A. G.;
Shymanovich, M. P. Thermodynamic Properties of 1-Butyl-3-meth-
ylimidazolium Hexafluorophosphate in the condensed State. J. Chem.
Eng. Data 2004, 49, 453–461.
(5) Kim, K.-S.; Shin, B.-K.; Lee, H.; Ziegler, F. Refractive index and
heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-
3-methylimidazolium tetrafluoroborate, and vapor pressure of binary
systems for 1-butyl-3-methylimidazolium bromide + trifluoroethanol
and 1-butyl-3-methylimidazolium tetrafluoroborate + trifluoroethanol.
Fluid Phase Equilib. 2004, 218, 215–220.
(6) Rebelo, L. P. N.; Najdanovic-Visak, V.; Visak, Z. P.; Nunes da Ponte,
M.; Szydlowski, J.; Cerdeirin˜a, C. A.; Troncoso, J.; Roman´ı, L.;
Esperanc¸a, J. M. S. S.; Guedes, H. J. R.; de Sousa, H. C. A detailed
thermodynamic analysis of [C4mim][BF4] + water as a case study to
model ionic liquid aqueous solutions. Green Chem. 2004, 6, 369–
381.
(30) Zhang, Z.-F.; Li, J.-G.; Zhang, Q.-G.; Guan, W.; Yang, J.-Z. Enthalpy
of Solution of Amino Acid Ionic Liquid 1-Ethyl-3-Methylimidazolium
Ammonioacetate. J. Chem. Eng. Data 2008, 53, 1196–1198.
(31) Constantinescu, D.; Schaber, K.; Agel, F.; Klingele, M. H.; Schubert,
T. J. S. Viscosities, vapor pressures, and excess enthalpies of choline
lactate plus water, choline glycolate plus water, and choline meth-
anesulfonate plus water systems. J. Chem. Eng. Data 2007, 52 (4),
1280–1285.
(32) Ortega, J.; Vreekamp, R.; Marrero, E.; Penco, E. Thermodynamic
Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its
Mixtures with Water and Alkanols. J. Chem. Eng. Data 2007, 52,
2269–2276.
(33) Katayanagi, H.; Nishikawa, K.; Shimozaki, H.; Miki, K.; Westh, P.;
Koga, Y. Mixing Schemes in Ionic Liquid-H2O Systems: A Thermo-
dynamic Study. J. Phys. Chem. B 2004, 108, 19451–19457.
(34) Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Ionic liquids are not
always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluo-
rophosphate. Green Chem. 2003, 5, 361–363.
(35) Rodr´ıguez, H.; Brennecke, J. F. Temperature and Composition
Dependence of the Density and Viscosity of Binary Mixtures of Water
+ Ionic Liquid. J. Chem. Eng. Data 2006, 51 (6), 2145–2155.
(36) Holbrey, J. D.; Reichert, W. M.; Swatloski, R. P.; Broker, G. A.; Pitner,
W. R.; Seddon, K. R.; Rogers, R. D. Efficient, halide free synthesis
of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing
methyl- and ethyl-sulfate anions. Green Chem. 2002, 4, 407–413.
(37) Bonhoˆte, P.; Dias, A. P.; Armand, M.; Papageorgiou, N.; Kalyana-
sundaram, K.; Gra¨tzel, M. Hydrophobic, Highly Conductive Ambient-
Temperature Molten Salts. Inorg. Chem. 1996, 35, 1168–1178,
Correction: Inorg. Chem. 1998, 37, 166.
(7) Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.;
Brennecke, J. F. Phase.transition and decomposition temperatures, heat
capacities and viscosities of pyridinium ionic liquids. J. Chem.
Thermodyn. 2005, 37, 559–568.
(8) Doman´ska, U.; Bogel-£ukasik, R. Physicochemical Properties and
Solubility of Alkyl-(2-hydroxyethyl)-dimethylammonium Bromide. J.
Phys. Chem. B 2005, 109, 12124–12132.
(9) Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. Investigation of
Physicochemical Properties of Lactam-Based Brønsted Acidic Ionic
Liquids. J. Phys. Chem. B 2005, 109, 19542–19546.
(10) Van Valkenburg, M. E.; Vaughn, R. L.; Williams, M.; Wilkes, J. S.
Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta
2005, 425, 181–188.
(11) Waliszewski, D.; Steˆpniak, I.; Piekarski, H.; Lewandowski, A. Heat
capacities of ionic liquids and their heats of solution in molecular
liquids. Thermochim. Acta 2005, 433, 149–152.
(12) Blokhin, A. V.; Paulechka, Y. U.; Kabo, G. J. Formation of metastable
crystals of [C4mim][NTf2] and [C6mim][NTf2]. Thermochim. Acta
2006, 445, 75–77.
(13) Blokhin, A. V.; Paulechka, Y. U.; Kabo, G. J. Thermodynamic
Properties of [C6mim][NTf2] in the Condensed State. J. Chem. Eng.
Data 2006, 51, 1377–1388.
(14) Diedrichs, A.; Gmehling, J. Measurement of heat capacities of ionic
liquids by differential scanning calorimetry. Fluid Phase Equilib. 2006,
244, 68–77.
(15) Shimizu, Y.; Ohte, Y.; Yamamura, Y.; Saito, K.; Atake, T. Low-
Temperature Heat Capacity of Room-Temperature Ionic Liquid,
1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J.
Phys. Chem. B 2006, 110, 13970–13975.
(38) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic SolVents:
Physical Properties and Methods of Purification, 4th ed.; John Wiley
& Sons: New York, 1986.
(39) Christensen, C., Gmehling, J., Rasmussen, P., Weidlich, U., Eds. Heats
of Mixing Data Collection, DECHEMA Chemistry Data Series; Scho¨n
& Wetzel GmbH: Franlfurt/Main, F. R. Germany, 1984-1991.
(40) Marsh, K. N., Ed. Recommended Reference Materials for the Realiza-
tion of Physicochemical Properties; Blackwell Scientific Publications:
Oxford, 1987.
(16) Troncoso, J.; Cerdeirin˜a, C. A.; Sanmamed, Y. A.; Roman´ı, L.; Rebelo,
L. P. N. Thermodynamic Properties of Imidazolium-Based Ionic
Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of
[bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 2006, 51, 1856–
1859.
(17) Yamamuro, O.; Minamimoto, Y.; Inamura, Y.; Hayashi, S.; Hamagu-
chi, H. Heat capacity and glass transition of an ionic liquid 1-butyl-
3-methylimidazolium chloride. Chem. Phys. Lett. 2006, 423, 371–
375.
(18) Zhang, Z.-H.; Tan, Z.-C.; Sun, L.-X.; Jia-Zhen, Y.; Lv, X.-C.; Shi,
Q. Thermodynamic investigation of room temperature ionic liquid:
(41) Doman´ska, U.; Marciniak, A. Activity Coefficients at Infinite Dilution
Measurements for Organics Solutes and Water in the Ionic Liquid