The Journal of Physical Chemistry B
Article
(59) Fan, J.; Hu, M.; Zhan, P.; Peng, X. Energy Transfer Cassettes
Based on Organic Fluorophores: Construction and Applications in
Ratiometric Sensing. Chem. Soc. Rev. 2013, 42, 29−43.
Combined Study by Absorption and Emission Spectroscopy and
Quantum Chemical Calculation. Chem. Phys. 2006, 324, 742−752.
(79) Morales, A. R.; Schafer-Hales, K. J.; Yanez, C. O.; Bondar, M. V.;
Przhonska, O. V.; Marcus, A. I.; Belfield, K. D. Excited State
Intramolecular Proton Transfer and Photophysics of a New Fluorenyl
Two-Photon Fluorescent Probe. ChemPhysChem 2009, 10, 2073−
2081.
(80) Cohen, M. D.; Flavian, S. Topochemistry. Part XXV. The
Absorption Spectra of Some N-Salicylideneanilines and Related Anils
in Solution. J. Chem. Soc. B 1967, 321−328.
(81) Itoh, M.; Fujiwara, Y. Transient Absorption and Two-Step Laser
Excitation Fluorescence Studies of Photoisomerization in 2-(2-
Hydroxyphenyl)Benzoxazole and 2-(2-Hydroxyphenyl) Benzothiazole.
J. Am. Chem. Soc. 1985, 107, 1561−1565.
(82) Seo, J.; Kim, S.; Park, S. Y. Strong Solvatochromic Fluorescence
From the Intramolecular Charge-Transfer State Created by Excited-
State Intramolecular Proton Transfer. J. Am. Chem. Soc. 2004, 126,
11154−11155.
(83) Apperloo, J. J.; Martineau, C.; Hal, P. A.; Roncali, J.; Janssen, R.
A. J. Intra- and Intermolecular Photoinduced Energy and Electron
Transfer between Oligothienylenevinylenes and N-Methylfulleropyr-
rolidine. J. Phys. Chem. A 2002, 106, 21−31.
(84) Kwak, M. J.; Kim, Y. Photostable BF2-Chelated Fluorophores
Based on 2-(2′-Hydroxyphenyl)benzoxazole and 2-(2′-
Hydroxyphenyl)benzothiazole. Bull. Korean Chem. Soc. 2009, 30,
2865−2866.
(85) Kowalczyk, T.; Lin, Z.; Voorhis, T. V. Fluorescence Quenching
by Photoinduced Electron Transfer in the Zn2+Sensor Zinpyr-1: A
Computational Investigation. J. Phys. Chem. A 2010, 114, 10427−
10434.
(86) Zhao, G.-J.; Liu, J.-Y.; Zhou, L.-C.; Han, K.-L. Site-Selective
Photoinduced Electron Transfer from Alcoholic Solvents to the
Chromophore Facilitated by Hydrogen Bonding: A New Fluorescence
Quenching Mechanism. J. Phys. Chem. B 2007, 111, 8940−8945.
(87) Laurent, A. D.; Houari, Y.; Carvalho, P. H. P. R.; Neto, B.; Neto,
A. D.; Jacquemin, D. ESIPT or not ESIPT? Revisiting Recent Results
on 2,1,3-Benzothiadiazole under the TD-DFT Light. RSC Adv. 2014,
4, 14189−14192.
(60) Othman, A. B.; Lee, J. W.; Wu, J.-S.; Kim, J. S.; Abidi, R.;
́
Thuery, P.; Strub, J. M.; Van Dorsselaer, A.; Vicens, J. Calix[4]arene-
Based, Hg2+-Induced Intramolecular Fluorescence Resonance Energy
Transfer Chemosensor. J. Org. Chem. 2007, 72, 7634−7640.
(61) Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. Single Fluorescent
Probe Responds to H2O2, NO, and H2O2/NO with Three Different
Sets of Fluorescence Signals. J. Am. Chem. Soc. 2011, 134, 1305−1315.
(62) Zhang, X.; Xiao, Y.; Qian, X. A Ratiometric Fluorescent Probe
Based on FRET for Imaging Hg2+ Ions in Living Cells. Angew. Chem.,
Int. Ed. 2008, 47, 8025−8029.
(63) Zhang, X.; Xiao, Y.; Qian, X. Highly Efficient Energy Transfer in
the Light Harvesting System Composed of Three Kinds of Boron−
Dipyrromethene Derivatives. Org. Lett. 2008, 10, 29−32.
(64) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A New
Trend in Rhodamine-Based Chemosensors: Application of Spirolac-
tam Ring-Opening to Sensing Ions. Chem. Soc. Rev. 2008, 37, 1465−
1472.
(65) Yang, Z.; She, M. Y.; Yin, B.; Cui, J. H.; Zhang, Y. Z.; Sun, W.;
Li, J. L.; Shi, Z. Three Rhodamine-Based “Off−On” Chemosensors
with High Selectivity and Sensitivity for Fe3+ Imaging in Living Cells. J.
Org. Chem. 2012, 77, 1143−1147.
(66) Yang, Y. K.; Yook, K. J.; Tae, J. A Rhodamine-Based Fluorescent
and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+
Ions in Aqueous Media. J. Am. Chem. Soc. 2005, 127, 16760−16761.
(67) Ko, S. K.; Yang, Y. K.; Tae, J.; Shin, I. In Vivo Monitoring of
Mercury Ions Using a Rhodamine-Based Molecular Probe. J. Am.
Chem. Soc. 2006, 128, 14150−14155.
(68) Wu, J. S.; Hwang, I. C.; Kim, K. S.; Kim, J. S. Rhodamine-Based
Hg2+-Selective Chemodosimeter in Aqueous Solution: Fluorescent
OFF−ON. Org. Lett. 2007, 9, 907−910.
(69) Zhao, Y.; Zhang, X.-B.; Han, Z.-X.; Qiao, L.; Li, C.-Y.; Jian, L.-
X.; Shen, G.-L.; Yu, R.-Q. Highly Sensitive and Selective Colorimetric
and Off−On Fluorescent Chemosensor for Cu2+ in Aqueous Solution
and Living Cells. Anal. Chem. 2009, 81, 7022−7030.
(70) Xiang, Y.; Tong, A. J.; Jin, P. Y.; Ju, Y. New Fluorescent
Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity
and Sensitivity. Org. Lett. 2006, 8, 2863−2866.
(71) Xu, Y.; Meng, J.; Meng, L.; Dong, Y.; Cheng, Y.; Zhu, C. A
Highly Selective Fluorescence-Based Polymer Sensor Incorporating an
(R,R)-Salen Moiety for Zn2+ Detection. Chem.Eur. J. 2010, 16,
12898−12903.
(72) Yang, P.; Zhao, J.; Wu, W.; Yu, X.; Liu, Y. Accessing the Long-
Lived Triplet Excited States in Bodipy-Conjugated 2-(2-Hydroxy-
phenyl) Benzothiazole/Benzoxazoles and Applications as Organic
Triplet Photosensitizers for Photooxidations. J. Org. Chem. 2012, 77,
6166−6178.
(88) Zhang, X.; Chi, L.; Ji, S.; Wu, Y.; Song, P.; Han, K.; Guo, H.;
James, T. D.; Zhao, J. Rational Design of d-PeT Phenylethynylated-
Carbazole Monoboronic Acid Fluorescent Sensors for the Selective
Detection of α-Hydroxyl Carboxylic Acids and Monosaccharides. J.
Am. Chem. Soc. 2009, 131, 17452−17463.
(89) Han, F.; Chi, L.; Liang, X.; Ji, S.; Liu, S.; Zhou, F.; Wu, Y.; Han,
K.; Zhao, J.; James, T. D. 3,6-Disubstituted Carbazole-Based
Bisboronic Acids with Unusual Fluorescence Transduction as
Enantioselective Fluorescent Chemosensors for Tartaric Acid. J. Org.
Chem. 2009, 74, 1333−1336.
(90) Zhang, X.; Wu, Y.; Ji, S.; Guo, H.; Song, P.; Han, K.; Wu, W.;
Wu, W.; James, T. D.; Zhao, J. Effect of the Electron Donor/Acceptor
Orientation on the Fluorescence Transduction Efficiency of the d-PET
Effect of Carbazole-Based Fluorescent Boronic Acid Sensors. J. Org.
Chem. 2010, 75, 2578−2588.
(73) Ma, J.; Zhao, J.; Yang, P.; Huang, D.; Zhang, C.; Li, Q. New
Excited State Intramolecular Proton Transfer (ESIPT) Dyes Based on
Naphthalimide and Observation of Long-Lived Triplet Excited States.
Chem. Commun. 2012, 48, 9720−9722.
(74) Frisch, M. J. et al. Gaussian 09, Revision A.1; Gaussian Inc.:
Wallingford, CT, 2009.
(75) Singh, R. B.; Mahanta, S.; Kar, S.; Guchhait, N. Photo-Physical
Properties of 1-Hydroxy-2-Naphthaldehyde: A Combined Fluores-
cence Spectroscopy and Quantum Chemical Calculations. Chem. Phys.
2007, 331, 373−384.
(76) Chowdhury, P.; Panja, S.; Chakravorti, S. Excited State
Prototropic Activities in 2-Hydroxy 1-Naphthaldehyde. J. Phys.
Chem. A 2003, 107, 83−90.
(91) Ji, S.; Yang, J.; Yang, Q.; Liu, S.; Chen, M.; Zhao, J. Tuning the
Intramolecular Charge Transfer of Alkynylpyrenes: Effect on Photo-
physical Properties and Its Application in Design of OFF−ON
Fluorescent Thiol Probes. J. Org. Chem. 2009, 74, 4855−4865.
(92) Guo, H.; Jing, Y.; Yuan, X.; Ji, S.; Zhao, J.; Li, X.; Kan, Y. Highly
Selective Fluorescent OFF−ON Thiol Probes Based on Dyads of
BODIPY and Potent Intramolecular Electron Sink 2,4-Dinitrobenze-
nesulfonyl Subunits. Org. Biomol. Chem. 2011, 9, 3844−3853.
(93) Shao, J.; Sun, H.; Guo, H.; Ji, S.; Zhao, J.; Wu, W.; Yuan, X.;
Zhang, C.; James, T. D. A Highly Selective Red-Emitting FRET
Fluorescent Molecular Probe Derived from BODIPY for the Detection
of Cysteine And Homocysteine: An Experimental and Theoretical
Study. Chem. Sci. 2012, 3, 1049−1061.
(77) Wu, K.-C.; Cheng, Y.-M.; Lin, Y.-S.; Yeh, Y.-S.; Pu, S.-C.; Hu,
Y.-H.; Yu, J.-K.; Chou, P.-T. Competitive Intramolecular Hydrogen
Bonding Formation and Excited-State Proton Transfer Reaction in 1-
[(Diethylamino)-methyl]-2-hydroxy-3-naphthaldehyde. Chem. Phys.
Lett. 2004, 384, 203−209.
(94) Deng, L.; Wu, W.; Guo, H.; Zhao, J.; Ji, S.; Zhang, X.; Yuan, X.;
Zhang, C. Colorimetric and Ratiometric Fluorescent Chemosensor
Based on Diketopyrrolopyrrole for Selective Detection of Thiols: An
(78) Mahanta, S.; Singh, R. B.; Kar, S.; Guchhait, N. Excited State
Intramolecular Proton Transfer in 3-Hydroxy-2-Naphthaldehyde: A
J
dx.doi.org/10.1021/jp5068507 | J. Phys. Chem. B XXXX, XXX, XXX−XXX