Inorganic Chemistry
Article
(
23) Lopci, E.; Grassi, I.; Chiti, A.; Nanni, C.; Cicoria, G.; Toschi, L.;
(44) Haedicke, I. E.; Li, T.; Zhu, Y. L. K.; Martinez, F.; Hamilton, A.
M.; Murrell, D. H.; Nofiele, J. T.; Cheng, H.-L. M.; Scholl, T. J.;
Fonti, C.; Lodi, F.; Mattioli, S.; Fanti, S. PET radiopharmaceuticals for
imaging of tumor hypoxia: a review of the evidence. Am. J. Nucl. Med.
Mol. Imaging 2014, 4, 365−384.
Foster, P. J.; Zhang, X.-a. An enzyme-activatable and cell-permeable
III
Mn -porphyrin as a highly efficient T MRI contrast agent for cell
1
(
24) Ruiz-Cabello, J.; Barnett, B. P.; Bottomley, P. A.; Bulte, J. W. M.
Fluorine ((19)F) MRS and MRI in biomedicine. NMR Biomed. 2011,
4, 114−129.
25) Srinivas, M.; Boehm-Sturm, P.; Figdor, C. G.; de Vries, I. J.;
labeling. Chem. Sci. 2016, 7, 4308−4317.
(45) Zhang, S.; Trokowski, R.; Sherry, A. D. A Paramagnetic CEST
Agent for Imaging Glucose by MRI. J. Am. Chem. Soc. 2003, 125,
15288−15289.
2
(
Hoehn, M. Labeling cells for in vivo tracking using 19F MRI.
Biomaterials 2012, 33, 8830−8840.
(
(46) Aime, S.; Delli Castelli, D.; Fedeli, F.; Terreno, E. A
Paramagnetic MRI-CEST Agent Responsive to Lactate Concentration.
J. Am. Chem. Soc. 2002, 124, 9364−9365.
26) Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo,
G.; Bombelli, F. B.; Metrangolo, P.; Resnati, G. 19F Magnetic
Resonance Imaging (MRI): From Design of Materials to Clinical
Applications. Chem. Rev. 2015, 115, 1106−1129.
(47) Wu, Y.; Zhou, Y.; Ouari, O.; Woods, M.; Zhao, P.; Soesbe, T.
C.; Kiefer, G. E.; Sherry, A. D. Polymeric PARACEST Agents for
Enhancing MRI Contrast Sensitivity. J. Am. Chem. Soc. 2008, 130,
(
27) Ahrens, E. T.; Flores, R.; Xu, H.; Morel, P. A. In vivo imaging
platform for tracking immunotherapeutic cells. Nat. Biotechnol. 2005,
3, 983−987.
28) Janjic, J. M.; Srinivas, M.; Kadayakkara, D. K. K.; Ahrens, E. T.
1
(
3854−13855.
48) Yu, M.; Ambrose, S. L.; Whaley, Z. L.; Fan, S.; Gorden, J. D.;
2
(
Beyers, R. J.; Schwartz, D. D.; Goldsmith, C. R. A Mononuclear
Manganese(II) Complex Demonstrates a Strategy To Simultaneously
Image and Treat Oxidative Stress. J. Am. Chem. Soc. 2014, 136,
Self-delivering Nanoemulsions for Dual Fluorine-19 MRI and
Fluorescence Detection. J. Am. Chem. Soc. 2008, 130, 2832−2841.
(
Academic Press, 2004; Vol. 386, pp 378−418.
(
Lippard, S. J.; Jasanoff, A. Complexes for Molecular Magnetic
Resonance Imaging of Intracellular Targets. J. Am. Chem. Soc. 2016,
1
(
2836−12839.
29) Zhao, D.; Jiang, L.; Mason, P. R. In Methods in Enzymology;
49) Senanayake, P. K.; Rogers, N. J.; Finney, K.-L. N. A.; Harvey, P.;
Funk, A. M.; Wilson, J. I.; O’Hogain, D.; Maxwell, R.; Parker, D.;
Blamire, A. M. A new paramagnetically shifted imaging probe for MRI.
Magn. Reson. Med. 2017, 77, 1307−1317.
30) Barandov, A.; Bartelle, B. B.; Gonzalez, B. A.; White, W. L.;
(
50) Xie, D.; King, T. L.; Banerjee, A.; Kohli, V.; Que, E. L.
1
(
38, 5483−5486.
19
Exploiting Copper Redox for F Magnetic Resonance-Based
31) Jeon, I.-R.; Park, J. G.; Haney, C. R.; Harris, T. D. Spin
Detection of Cellular Hypoxia. J. Am. Chem. Soc. 2016, 138, 2937−
crossover iron(ii) complexes as PARACEST MRI thermometers.
Chem. Sci. 2014, 5, 2461−2465.
(
2
940.
(51) Chalmers, K. H.; De Luca, E.; Hogg, N. H. M.; Kenwright, A.
32) Du, K.; Harris, T. D. A Cu(II)2 Paramagnetic Chemical
M.; Kuprov, I.; Parker, D.; Botta, M.; Wilson, J. I.; Blamire, A. M.
Design Principles and Theory of Paramagnetic Fluorine-Labelled
Lanthanide Complexes as Probes for 19F Magnetic Resonance: A
Proof-of-Concept Study. Chem. - Eur. J. 2010, 16, 134−148.
Exchange Saturation Transfer Contrast Agent Enabled by Magnetic
Exchange Coupling. J. Am. Chem. Soc. 2016, 138, 7804−7807.
(
33) Harvey, P.; Kuprov, I.; Parker, D. Lanthanide Complexes as
19
Paramagnetic Probes for F Magnetic Resonance. Eur. J. Inorg. Chem.
012, 2012, 2015−2022.
34) Gale, E. M.; Atanasova, I. P.; Blasi, F.; Ay, I.; Caravan, P. A
(
̈
52) Schmid, F.; Holtke, C.; Parker, D.; Faber, C. Boosting 19F
2
(
MRISNR efficient detection of paramagnetic contrast agents using
ultrafast sequences. Magn. Reson. Med. 2013, 69, 1056−1062.
Manganese Alternative to Gadolinium for MRI Contrast. J. Am. Chem.
Soc. 2015, 137, 15548−15557.
(
A Janus Chelator Enables Biochemically Responsive MRI Contrast
with Exceptional Dynamic Range. J. Am. Chem. Soc. 2016, 138,
(
53) De Luca, E.; Harvey, P.; Chalmers, K. H.; Mishra, A.;
Senanayake, P. K.; Wilson, J. I.; Botta, M.; Fekete, M.; Blamire, A.
M.; Parker, D. Characterisation and evaluation of paramagnetic
fluorine labelled glycol chitosan conjugates for 19F and 1H magnetic
resonance imaging. JBIC, J. Biol. Inorg. Chem. 2014, 19, 215−227.
35) Gale, E. M.; Jones, C. M.; Ramsay, I.; Farrar, C. T.; Caravan, P.
1
(
5861−15864.
(
́
54) Srivastava, K.; Weitz, E. A.; Peterson, K. L.; Marjanska, M.;
36) Dorazio, S. J.; Tsitovich, P. B.; Siters, K. E.; Spernyak, J. A.;
Pierre, V. C. Fe- and Ln-DOTAm-F12 Are Effective Paramagnetic
Morrow, J. R. Iron(II) PARACEST MRI Contrast Agents. J. Am.
Chem. Soc. 2011, 133, 14154−14156.
(
Fluorine Contrast Agents for MRI in Water and Blood. Inorg. Chem.
2
(
017, 56, 1546−1557.
37) Olatunde, A. O.; Dorazio, S. J.; Spernyak, J. A.; Morrow, J. R.
55) Kislukhin, A. A.; Xu, H.; Adams, S. R.; Narsinh, K. H.; Tsien, R.
The NiCEST Approach: Nickel(II) ParaCEST MRI Contrast Agents.
Y.; Ahrens, E. T. Paramagnetic fluorinated nanoemulsions for sensitive
cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 2016, 15,
J. Am. Chem. Soc. 2012, 134, 18503−18505.
(
38) Mizukami, S.; Takikawa, R.; Sugihara, F.; Shirakawa, M.;
6
62−668.
Kikuchi, K. Dual-Function Probe to Detect Protease Activity for
Fluorescence Measurement and 19F MRI. Angew. Chem., Int. Ed. 2009,
(56) van Eldik, R.; Bertini, I. Advances in Inorganic Chemistry:
Relaxometry of Water-Metal Ion Interactions; Elsevier Science, 2005.
57) Bertini, I.; Turano, P.; Vila, A. J. Nuclear magnetic resonance of
paramagnetic metalloproteins. Chem. Rev. 1993, 93, 2833−2932.
58) Bertini, I.; Luchinat, C.; Parigi, G.; Ravera, E. In NMR of
Paramagnetic Molecules, 2nd ed.; Elsevier: Boston, 2017; pp 77−126.
59) Jahnke, W. In BioNMR in Drug Research; Wiley-VCH Verlag
GmbH & Co. KGaA, 2003; pp 341−354.
60) Dearling, J. L.; Lewis, J. S.; Mullen, G. E.; Welch, M. J.; Blower,
4
(
8, 3641−3643.
39) Mizukami, S.; Takikawa, R.; Sugihara, F.; Hori, Y.; Tochio, H.;
Walchli, M.; Shirakawa, M.; Kikuchi, K. Paramagnetic Relaxation-
Based F MRI Probe To Detect Protease Activity. J. Am. Chem. Soc.
008, 130, 794−795.
40) Ekanger, L. A.; Polin, L. A.; Shen, Y.; Haacke, E. M.; Martin, P.
(
̈
19
(
2
(
(
II
D.; Allen, M. J. A Eu -Containing Cryptate as a Redox Sensor in
Magnetic Resonance Imaging of Living Tissue. Angew. Chem., Int. Ed.
(
P. J. Copper bis(thiosemicarbazone) complexes as hypoxia imaging
agents: structure-activity relationships. JBIC, J. Biol. Inorg. Chem. 2002,
7, 249−259.
(61) Paterson, B. M.; Karas, J. A.; Scanlon, D. B.; White, J. M.;
Donnelly, P. S. Versatile New Bis(thiosemicarbazone) Bifunctional
2
(
015, 54, 14398−14401.
41) Ekanger, L. A.; Allen, M. J. Overcoming the concentration-
dependence of responsive probes for magnetic resonance imaging.
Metallomics 2015, 7, 405−421.
(
42) Harrison, V. S. R.; Carney, C. E.; MacRenaris, K. W.; Waters, E.
A.; Meade, T. J. Multimeric Near IR−MR Contrast Agent for
Chelators: Synthesis, Conjugation to Bombesin(7−14)-NH
2
, and
Multimodal In Vivo Imaging. J. Am. Chem. Soc. 2015, 137, 9108−9116.
Copper-64 Radiolabeling. Inorg. Chem. 2010, 49, 1884−1893.
(
43) Major, J. L.; Parigi, G.; Luchinat, C.; Meade, T. J. The synthesis
(62) Cowley, A. R.; Dilworth, J. R.; Donnelly, P. S.; Labisbal, E.;
Sousa, A. An Unusual Dimeric Structure of a Cu(I) Bis-
(thiosemicarbazone) Complex: Implications for the Mechanism of
and in vitro testing of a zinc-activated MRI contrast agent. Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 13881−13886.
H
Inorg. Chem. XXXX, XXX, XXX−XXX