Bioconjugate Chemistry
Article
(28) Chithrani, B. D., and Chan, W. C. W. (2007) Elucidating the
mechanism of cellular uptake and removal of protein-coated gold
nanoparticles of different sizes and shapes. Nano Lett. 7, 1542−1550.
(29) Jin, H., Heller, D. A., and Strano, M. S. (2008) Single-particle
tracking of endocytosis and exocytosis of single-walled carbon
nanotubes in NIH-3T3 cells. Nano Lett. 8, 1577−1585.
(30) Slowing, I. I., Vivero-Escoto, J. −L., Zhao, Y., Kandel, K.,
Peeraphatdit, C., Trewyn, B. G., and Lin, V. S.−Y. (2011) Exocytosis
of mesoporous silica nanoparticles from mammalian cells: from
asymmetric cell-to-cell transfer to protein harvesting. Small 7, 1526−
1532.
(31) Yanes, R. E., Tarn, D., Hwang, A. A., Ferris, D. P., Sherman, S.
P., Thomas, C. R., Lu, J., Pyle, A. D., Zink, J. I., and Tamanoi, F.
(2013) Involvement of lysosomal exocytosis in the excretion of
mesoporous silica nanoparticles and enhancement of the drug delivery
effect by exocytosis inhibition. Small 9, 697−704.
(32) Shan, D., Nicolaou, M. G., Borchardt, R. T., and Wang, B.
(1997) Prodrug strategies based on intramolecular cyclization
reactions. J. Pharm. Sci. 86, 765−767.
(48) Niidome, Y., Nishioka, K., Kawasaki, H., and Yamada, S. (2003)
Rapid synthesis of gold nanorods by the combination of chemical
reduction and photoirradiation processes; morphological changes
depending on the growing processes. Chem. Commun., 2376−2377.
(49) Kim, F., Song, J. H., and Yang, P. (2002) Photochemical
synthesis of gold nanorods. J. Am. Chem. Soc. 124, 14316−14317.
(50) Tshikhudo, T. R., Wang, Z., and Brust, M. (2004)
Biocompatible gold nanoparticles. Mater. Sci. Technol. 20, 980−984.
(51) Vigderman, L., Manna, P., and Zubarev, E. R. (2012)
Quantitative replacement of cetyl trimethylammonium bromide by
cationic thiol ligands on the surface of gold nanorods and their
extremely large uptake by cancer cells. Angew. Chem., Int. Ed. 51, 636−
641.
(52) Fan, C., Wang, S., Hong, J. W., Bazan, G. C., Plaxco, K. W., and
Heeger, A. J. (2003) Beyond superquenching: hyper-efficient energy
transfer from conjugated polymers to gold nanoparticles. Proc. Natl.
Acad. Sci. U. S. A. 100, 6297−301.
(53) Prado-Gotor, R., and Grueso, E. (2011) A kinetic study of the
interaction of DNA with gold nanoparticles:mechanistic aspects of the
interaction. Phys. Chem. Chem. Phys. 13, 1479−1489.
(33) Wang, B., Zhang, H., Zheng, A., and Wang, W. (1998)
Coumarin-based prodrugs. part 3: structural effects on the release
kinetics of esterase-sensitive prodrugs of amines. Bioorg. Med. Chem. 6,
417−426.
(34) Zheng, A., Wang, W., Zhang, H., and Wang, B. (1999) Two new
improved approaches to the synthesis of coumarin-based prodrugs.
Tetrahedron 55, 4237−4254.
(54) Kaufman, E. D., Belyea, J., Johnson, M. C., Nicholson, Z. M.,
Ricks, J. L., Shah, P. K., Bayless, M., Pettersson, T., Feldoto, Z.,
̈
Blomberg, E., Claesson, P., and Franzen, S. (2007) Probing protein
adsorption onto mercaptoundecanoic acid stabilized gold nano-
particles and surfaces by quartz crystal microbalance and ζ-potential
measurements. Langmuir 23, 6053−6062.
(55) Ravindran, A., Singh, A., Raichur, A. M., Chandrasekaran, N.,
and Mukherjee, A. (2010) Studies on interaction of colloidal Ag
nanoparticles with bovine serum albumin (BSA). Colloids Surf. B
Biointerfaces 76, 32−37.
(35) Liao, Y., Hendrata, S., Yong, S., and Wang, B. (2000) The effect
of phenyl substituents on the release rate of esterase-sensitive
coumarin-based prodrugs. Chem. Pharm. Bull. 48, 1138−1147.
(36) Amsberry, K. L., and Borchardt, R. T. (1991) Amine prodrugs
which utilize hydroxy amide lactonization. I. A potential redox-
sensitive amide prodrug. Pharm. Res. 8, 323−330.
(56) Baier, G., Costa, C., Zeller, A., Baumann, D., Sayer, C., Araujo,
P. H. H., Mailander, V., Musyanovych, A., and Landfester, K. (2011)
̈
BSA adsorption on differently charged polystyrene nanoparticles using
isothermal titration calorimetry and the influence on cellular uptake.
Macromol. Biosci. 11, 628−638.
(37) Gomes, P., Vale, N., and Moreira, R. (2007) Cyclization-
activated prodrugs. Molecules 12, 2484−2506.
(38) Liu, R., Aw, J., Teo, W., Padmanabhan, P., and Xing, B. (2010)
Novel trimethyl lock based enzyme switch for the self-assembly and
disassembly of gold nanoparticles. New J. Chem. 34, 594−598.
(39) Cho, H., Bae, J., Garripelli, V. K., Anderson, J. M., Jun, H. −W.,
and Jo, S. (2012) Redox-sensitive polymeric nanoparticles for drug
delivery. Chem. Commun. 48, 6043−6045.
(57) Pan, B., Cui, D., Xu, P., Li, Q., Huang, T., He, R., and Gao, F.
(2007) Study on interaction between gold nanorod and bovine serum
albumin. Colloids Surf., A: Physicochem. Eng. Aspects 295, 217−222.
(58) Chakraborty, S., Joshi, P., Shanker, V., Ansari, Z. A., Singh, S. P.,
and Chakrabarti, P. (2011) Contrasting effect of gold nanoparticles
and nanorods with different surface modifications on the structure and
activity of bovine serum albumin. Langmuir 27, 7722−7731.
(59) Ishiyama, M., Shiga, M., Sasamoto, K., Mizoguchi, M., and He,
P. (1993) A new sulfonated tetrazolium salt that produces a highly
water-soluble formazan dye. Chem. Pharm. Bull. 41, 1118−1122.
(60) Wang, L., Liu, Y., Li, W., Jiang, X., Ji, Y., Wu, X., Xu, L., Qiu, Y.,
Zhao, K., Wei, T., Li, Y., Zhao, Y., and Chen, C. (2011) Selective
targeting of gold nanorods at the mitochondria of cancer cells:
implications for cancer therapy. Nano Lett. 11, 772−780.
(40) Dubertret, B., Calame, M., and Libchaber, A. J. (2001) Single-
mismatch detection using gold-quenched fluorescent oligonucleotides.
Nat. Biotechnol. 19, 365−370.
(41) Dulkeith, E., Morteani, A. C., Niedereichholz, T., Klar, T. A.,
and Feldmann, J. (2002) Fluorescence quenching of dye molecules
near gold nanoparticles: radiative and nonradiative effects. Phys. Rev.
Lett. 89, 203002.
(42) Yun, C. S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson,
S., Hopkins, B., Reich, N. O., and Strouse, G. F. (2005) Nanometal
surface energy transfer in optical rulers, breaking the FRET barrier. J.
Am. Chem. Soc. 127, 3115−3119.
(43) Bunce, R. A., and Schilling, C. L., III (1997) Five- and six-
membered lactones and lactams by tandem dealkoxycarbonylation-
Michael addition reactions. Tetrahedron 53, 9477−9486.
(44) Das, S. K., Dinda, S. K., and Panda, G. (2009) Enantioselective
synthesis of functionalized 1-benzoxepines by phenoxide ion mediated
7-endo-tet carbocyclization of cyclic sulfates. Eur. J. Org. Chem., 204−
207.
(61) Mohamed, M. B., Volkov, V., Link, S., and El-Sayed, M. A.
(2000) The ‘lightning’ gold nanorods: fluorescence enhancement of
over a million compared to the gold metal. Chem. Phys. Lett. 317, 517−
523.
(45) Shiono, H., and Noda, H. Jpn. Kokai Tokkyo Koho JP
09227560 A, September 2, 1997.
(46) Maus, L., Dick, O., Bading, H., Spatz, J. P., and Fiammengo, R.
(2010) Conjugation of peptides to the passivation shell of gold
nanoparticles for targeting of cell-surface receptors. ACS Nano 4,
6617−6628.
(47) Morita, T., Kimura, S., and Kobayashi, S. (2000) Photocurrent
generation under a large dipole moment formed by self-assembled
monolayers of helical peptides having an N-ethylcarbazolyl group. J.
Am. Chem. Soc. 122, 2850−2859.
1444
dx.doi.org/10.1021/bc3005599 | Bioconjugate Chem. 2013, 24, 1435−1444