10.1002/anie.202002440
Angewandte Chemie International Edition
COMMUNICATION
Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S.
Jin, Q. Shen, H. Wang, Nature 2016, 538, 84-87.
In the absence of an oxidant such as O2, the C3H7
intermediate is inert to surface-mediated C-H activation and
further oxidation (Figure S32), though gas-phase unimolecular
cleavage could still occur. The high thermodynamic (and kinetic)
unfavorability of the subsequent C-H activation by the B-O-B
oxygen is explained by poor redox ability of the surface, which
differs from conventional ODHP catalysts such as vanadia and
other transition metal oxides.[16] Instead, we have found the redox-
poor surface catalyzes the reaction by heterolytic C-H cleavage
followed by a reduction of the gas phase oxidant rather than the
surface. The proposed mechanism bears similarities to other
redox-poor oxides such as MgO,[17] and shares their capacity for
selective alkane conversions.
In summary, we have successfully demonstrated that the
ODHP reaction catalyzed by both h-BN and suppored boron oxide
catalysts involves the gas-phase radical mechanisms and
pathways with unambiguously identified gas-phase methyl
radicals by using the SVUV-PIMS. By coupling the results from
kinetic and SVUV-PIMS studies with DFT calculations, detailed
reaction pathways are proposed for the various products from
ODHP over boron-based catalysts. Propene is mainly formed
from surface reaction via the cleavage of C-H bonds of propane.
Both surface-mediated and gas-phase reactions pathways can
contribute to the C1 and C2 products. Our findings provide new
insights towards understanding the ODHP reaction mechanisms
and pathways over boron-based catalysts and are of significance
for developing highly selective catalysts for alkane ODH.
[2]
[3]
E. G. Rightor, C. L. Tway, Catal. Today 2015, 258, 226-229.
a) J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt,
S. E. Specht, W. P. McDermott, A. Chieregato, I. Hermans, Science
2016, 354, 1570-1573; b) J. M. Venegas, W. P. McDermott, I. Hermans,
Acc. Chem. Res. 2018, 51, 2556-2564; c) L. Shi, Y. Wang, B. Yan, W.
Song, D. Shao, A. H. Lu, Chem. Commun. 2018, 54, 10936-10946; d) F.
Guo, P. Yang, Z. Pan, X. N. Cao, Z. Xie, X. Wang, Angew. Chem. Int.
Ed. 2017, 56, 8231-8235; e) L. Shi, D. Q. Wang, A. H. Lu, Chin. J. Catal.
2018, 39, 908-913; f) P. Chaturbedy, M. Ahamed, M. Eswaramoorthy,
ACS Omega 2018, 3, 369-374.
[4]
a) L. Shi, D. Q. Wang, W. Song, D. Shao, W. P. Zhang, A. H. Lu,
ChemCatChem 2017, 9, 1788-1793; b) L. Shi, B. Yan, D. Shao, F. Jiang,
D. Q. Wang, A. H. Lu, Chin. J. Catal. 2017, 38, 389-395; c) B. Yan, W.
C. Li, A. H. Lu, J. Catal. 2019, 369, 296-301; d) R. Huang, B. S. Zhang,
J. Wang, K. H. Wu, W. Shi, Y. J. Zhang, Y. F. Liu, A. M. Zheng, R.
Schlögl, D. S. Su, ChemCatChem 2017, 9, 3293-3297; e) J. T. Grant, W.
P. McDermott, J. M. Venegas, S. P. Burt, J. Micka, S. P. Phivilay, C. A.
Carrero, I. Hermans, ChemCatChem 2017, 9, 3623-3626; f) A. M. Love,
B. Thomas, S. E. Specht, M. P. Hanrahan, J. M. Venegas, S. P. Burt, J.
T. Grant, M. C. Cendejas, W. P. McDermott, A. J. Rossini, I. Hermans,
J. Am. Chem. Soc. 2019, 141, 182-190; g) N. Altvater, R. Dorn, M.
Cendejas, W. McDermott, B. Thomas, A. Rossini, I. Hermans, Angew.
Chem. Int. Ed. 10.1002/anie.201914696; h) W.-D. Lu, D. Wang, Z. Zhao,
W. Song, W.-C. Li, A.-H. Lu, ACS Catal. 2019, 8263-8270.
[5]
a) C. A. Carrero, R. Schloegl, I. E. Wachs, R. Schomaecker, ACS Catal.
2014, 4, 3357-3380; b) F. Cavani, N. Ballarini, A. Cericola, Catal. Today
2007, 127, 113-131; c) S. Barman, N. Maity, K. Bhatte, S. Ould-Chikh,
O. Dachwald, C. Haeßner, Y. Saih, E. Abou-Hamad, I. Llorens, J.-L.
Hazemann, K. Köhler, V. D’ Elia, J.-M. Basset, ACS Catal. 2016, 6, 5908-
5921.
[6]
[7]
[8]
J. M. Venegas, I. Hermans, Org. Process Res. Dev. 2018, 22, 1644-
1652.
Acknowledgements
J. S. Tian, J. Q. Tan, M. L. Xu, Z. X. Zhang, S. L. Wan, S. Wang, J. D.
Lin, Y. Wang, Sci. Adv. 2019, 5, eaav8063.
This work was supported by the Center for Understanding and
Control of Acid Gas-Induced Evolution of Materials for Energy
(UNCAGE-ME), an Energy Frontier Research Center funded by
U.S. Department of Energy, Office of Science, Basic Energy
Sciences. X.Z, R.Y, Z.Y.W and W.H were supported by the
National Natural Science Foundation of China (21525313,
91745202, 21703227), the Chinese Academy of Sciences, the
Changjiang Scholars Program of Ministry of Education of China,
and the China Scholarship Council. Part of the work incluidng the
synthesis and catalysis test was done at the Center for
Nanophase Materials Sciences, which is a DOE Office of Science
User Facility.
a) K. Kohse-Hoinghaus, P. Osswald, T. A. Cool, T. Kasper, N. Hansen,
F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Ed.
2010, 49, 3572-3297; b) F. Battin-Leclerc, O. Herbinet, P. A. Glaude, R.
Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Angew. Chem. Int. Ed.
2010, 49, 3169-3172; c) Y. Li, F. Qi, Acc. Chem. Res 2010, 43, 68-78; d)
L. F. Luo, X. F. Tang, W. D. Wang, Y. Wang, S. B. Sun, F. Qi, W. X.
Huang, Sci. Rep. 2013, 3, 1625-1632; e) R. You, X. Y. Zhang, L. F. Luo,
Y. Pan, H. B. Pan, J. Z. Yang, L. H. Wu, X. S. Zheng, Y. K. Jin, W. X.
Huang, J. Catal. 2017, 348, 189-199; f) L. F. Luo, R. You, Y. M. Liu, J. Z.
Yang, Y. N. Zhu, W. Wen, Y. Pan, F. Qi, W. X. Huang, ACS Catal. 2019,
9, 2514-2520; g) F. Jiao, J. J. Li, X. L. Pan, J. P. Xiao, H. B. Li, H. Ma,
M. M. Wei, Y. Pan, Z. Y. Zhou, M. R. Li, S. Miao, J. Li, Y. F. Zhu, D. Xiao,
T. He, J. Yang, F. Qi, X. H. Bao, Science 2016, 351, 1065-1068; h) R.
You, W. X. Huang, ChemCatChem 2020, 12, 675-688.
[9]
W. Zhu, X. Gao, Q. Li, H. Li, Y. Chao, M. Li, S. M. Mahurin, H. Li, H. Zhu,
S. Dai, Angew. Chem. Int. Ed. 2016, 55, 10766-10770.
Notice: This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes. The
Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE
[10] a) J. Wu, W.-Q. Han, W. Walukiewicz, J. Ager, W. Shan, E. Haller, A.
Zettl, Nano Lett. 2004, 4, 647-650; b) R. Arenal, A. Ferrari, S. Reich, L.
Wirtz, J.-Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Nano Lett. 2006,
6, 1812-1816.
[11] a) J. A. Loiland, Z. Zhao, A. Patel, P. Hazin, Ind. Eng. Chem. Res. 2019,
58, 2170-2180; b) Y. L. Zhou, J. Lin, L. Li, X. L. Pan, X. C. Sun, X. D.
Wang, J. Catal. 2018, 365, 14-23; c) S. Namba, A. Takagaki, K. Jimura,
S. Hayashi, R. Kikuchi, S. Ted Oyama, Catal. Sci. Technol. 2019, 9, 302-
309; d) J. H. Wu, L. C. Wang, X. Yang, B. L. Lv, J. Chen, Ind. Eng. Chem.
Res. 2018, 57, 2805-2810.
[12] P.J. Linstrom, W.G. Mallard, NIST Chemistry Webbook, National
Institute of Standards and Technology, Gaithersburg, MD, 2008,
Number, <http://webbook.nist.gov.chemistry>.
Keywords: hexagonal boron nitride • oxidative dehydrogenation
• mass spectroscopy • methyl radical • reaction pathway
[13] Internet
Bond-energy
Databank
(pKa
and
BDE)-iBonD,
[1]
a) J. J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M.
[14] a) L. Annamalai, Y. Liu, P. Deshlahra, ACS Catal. 2019, 9, 10324-10338;
b) J. M. Zalc, W. H. Green, E. Iglesia, Ind. Eng. Chem. Res. 2006, 45,
Weckhuysen, Chem. Rev. 2014, 114, 10613-10653; b) L. Zhong, F. Yu,
4
This article is protected by copyright. All rights reserved.