3
Soc., 2008, 130, 9238; (c) Desrosiers, J. N.; Charette, A. B. Angew.
system, indicating that the possible involvement of a radical
process in the present transformation (Scheme 2, (c)). Moreover,
in addition to product 3a, the homocoupling diyne was also
detected by GC-MS in the model reaction (see SI), which
indicated an alkynyl and iodine radical might involve in this
reaction system (Scheme 2, (d)).15
Chem., Int. Ed., 2007, 46, 5955; (d) Kotha, S.; Chavan, A. S. J. Org.
Chem., 2010, 75, 4319; (e) Kumar, A.; Muthyala, M. K. Tetrahedron
Lett., 2011, 22, 1287 and references in.
3. Selected reviews: (a) Back, T. G.; Clary K. N.; Gao, D. Chem. Rev. 2010,
110, 4498; (b) Garcia Ruano, J. L.; Aleman, J.; Parra, J.; Marzo, L. Eur.
J. Org. Chem. 2014, 1577.
4. Selected examples: (a) Huang, D. F.; Shen, T. Y. Tetrahedron Lett.
1993, 34, 4477; (b) Hlasta, D. J.; Ackerman, J. H. J. Org. Chem. 1994,
59, 6184; (c) Spencer, J.; Pfeffer, M.; DeCian, A.; Fischer, J. J. Org.
Chem. 1995, 60, 1005; (d) Riddell, N.; Tam, W. J. Org. Chem. 2006, 71,
1934; (e) Takeda, T.; Ando, M.; Sugita, T.; Tsubouchi, A. Org. Lett.
2007, 9, 2875; (f) Li, J.; Tian, H.; Jiang, M.; Yang, H.; Zhao, Y.; Fu, H.
Chem. Commun. 2016, 52, 8862.
On the basis of these results, a possible reaction pathway
for this coupling reaction was proposed as shown in Scheme
3. Firstly, sulfinic acid 2a gave the sulfonyl radical 6a with
the help of iodine radical, which was generated in situ from
homocoupling of alkynliodine. Then, the selective addition
of sulfonyl radical 6a to alkynyliodine 1a would lead to
formation of alkenyl radical 7a. Finally, 7a underwent β-
fragmentation of an iodine radical that then abstracted a H-
atom from the sulfinic acid 2a to sustain the chain and
produce the desired alkynyl sulfone 3a. Nevertheless,
another possible pathway involving the cross-coupling of
sulfonyl radical with alkyne radical that generated in situ
from alkynyliodine might also be involved in this reaction
5. (a) Truce, W. E.; Hill, H. E.; Boudakian, M. M. J. Am. Chem. Soc. 1956,
78, 2760; (b) Miller, S. I.; Orzech, C. E.; Welch, C. A.; Ziegler, G. R.;
Dickstein, J. I. J. Am. Chem. Soc. 1962, 84, 2020.
6. Waykole, L.; Paquette, L. A. Org. Synth. 1989, 67, 149.
7.
(a) Lee, J. W.; Oh, D. Y. Synlett 1990, 290; (b) Clasby, M. C.; Craig, D.
Synlett 1992, 825.
8. (a) Miura, T.; Kobayashi, M. J. Chem. Soc., Chem. Commun. 1982, 438;
(b) Waykole, L.; Paquette, L. A. Org. Synth. 1989, 67, 149; (c) Back, T.
G.; Collins S.; Kerr, R. G. J. Org. Chem. 1983, 48, 3077; (d) Iwata, N.;
Morioka, T.; Kobayashi, T.; Asada, T.; Kinoshita H.; Inomata, K. Bull.
Chem. Soc. Jpn. 1992, 65, 1379; (e) Lee, J. W.; Kim, T. H.; Oh, D. Y.
Synth. Commun. 1989, 19, 2633; (f) Rajakumar, P.; Kannan, A. J. Chem.
Soc., Chem. Commun. 1989, 154; (g) Back, T. G.; Krishna, M. V. J. Org.
Chem. 1987, 52, 4265.
system 15
.
9. Beccaili, E. M.; Manfredi, A.; Marchesini, A. J. Org. Chem. 1985, 50,
2372.
10. (a) Tykwinski, R. R.; Williamson, B. L.; Fischer, D. R.; Stang, P. J.; Arif,
A. M. J. Org. Chem. 1993, 58, 5235; (b) Liu Z.-D.; Chen, Z.-C. Synth.
Commun. 1992, 22, 1997; (c) Hamnett, D. J.; Moran, W. J. Org. Biomol.
Chem. 2014, 12, 4156; (d) Rodríguez, A.; Moran, W. J. J. Org. Chem.
2016, 81, 2543.
11. Suzuki, H.; Abe, H. Tetrahedron Lett, 1996, 37, 3717.
12. Chen, C. C.; Waser, J. Org. Lett. 2015, 17, 736.
13. Meesin, J.; Katrun, P.; Pareseecharoen, C.; Pohmakotr, M.; Reutrakul,
V.; Soorukram, D.; Kuhakarn, C. J. Org. Chem. 2016, 81, 2744.
14. (a) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H.
Chem. Commun., 2013, 49, 10239; (b) Wei, W.; J, Wen, Yang, D.; Du,
J.; You, J.; Wang, H. Green Chem., 2014, 16, 2988; (c) Wei, W.; Wen,
J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Chem. Commun.,
2015, 51, 768; (d) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Wang,
H. Adv. Synth. Catal., 2015, 357, 987; (e) Wen, J.; Wei, W.; Xue, S.;
Yang, D.; Lou, Y.; Gao C.; Wang, H. J. Org. Chem., 2015, 80, 4966;
(f) Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J.; Wang, H. Org.
Biomol. Chem. 2014, 12, 1861; (g) Wei, W.; Wen, J.; Yang, D.; Wu, M.;
You, J.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678; (h) Wei, W.;
Wen, J.; Yang, D.; Jing, H.; You J.; Wang, H. RSC Adv.,2015, 5, 4416;
(i) Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org.
Chem. Front., 2017, 4, 26.
Scheme 3. Possible reaction pathway
In summary, we have successfully developed a convenient and
efficient catalyst-free method for the construction of alkynyl
sulfones through the direct cross-coupling of aryl alkynyliodines
and arylsulfinic acids. The present protocol, which utilizes
readily available starting materials, simple operation, and
environmentally benign conditions, provides a highly attractive
approach to various alkynyl sulfones in moderate to good yields.
Preliminary mechanistic studies indicated that a radical process
might be involved in the present reaction. Further investigation of
the detailed reaction mechanism and synthetic application are
ongoing in our lab.
15. (a) Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M.; Hashmi, A. S.
K. Angew. Chem., Int. Ed. 2015, 54, 6046; (b) Huang, H-Y.; Cheng, L.;
Liu, J-J.; Wang, D.; Liu, L.; Li, C-J. J. Org. Chem., 2017, 82, 2656; (c)
Gu, X.; Guo, Y.; Zhang, F.; Mebel, A. M.; Kaiser, R. I. Chem. Phys. Lett.
2007, 436, 7.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 21302109, 21302110, and 21675099),
the Natural Science Foundation of Shandong Province
(ZR2015JL004 and ZR2016JL012), the Open Projects Program
of the Key Laboratory of Tibetan Medicine Research, Chinese
Academy of Sciences and International Cooperation Project of
Qinghai Province (2017-HZ-806).
References and notes
1. (a) Artico, M.; Silvestri, R. Pagnozzi, E.; Bruno, B.; Novellino, E.;
Greco, G.; Massa, S.; Ettorre, A.; Giulia Loi, A.; Scintu, F.; Colla, P. La.
J. Med. Chem. 2000, 43, 1886; (b) Lopez de Compadre, R. L.; Pearlstein,
R. A.; Hopfinger, A. J.; Seyde, J. K. J. Med. Chem. 1987, 30, 900; (c)
Petrov, K. G.; Zhang, Y.; Carter, M.; Cockerill, G. S.; Dickerson, S.;
Gauthier, C. A.; Guo, Y.; Mook, R. A.; Rusnak, D. W.; Walker, A. L.;
Wood, E. R.; Lackey, K. E. Bioorg. Med. Chem. Lett., 2006, 16, 4686.
2. (a) Simpkins, N. S.; Sulfones in Organic Synthesis, Pergamon Press,
Oxford, 1993; (b) Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am.Chem.