D
Synlett
H.-H. Chang et al.
Letter
O
O
HN
Me
DABCO
O
O
I2
OH
O
H+
– I–
–
N
Me
N
I
Me
1a
A
B
O
O
H
N
O
HN
Me
DABCO
HI
I
Me
–
Z
H
O
2a
C
Scheme 4 Proposed mechanism for stereoslective dehydrogenation
References and Notes
(9) (a) Lin, S.; Yang, Z.-Q.; Kwok, K. H. B.; Koldobskiy, M.; Crews, C.
M.; Danyshefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6347.
(1) (a) Huang, K.; Zhang, X.; Geng, H.; Li, S.-K.; Zhang, X. ACS Catal.
(b) Sugiura, M.; Kumahara, M.; Nakajima, M. Chem. Commun.
2012, 2, 1343. (b) Geng, H.; Huang, K.; Sun, T.; Li, W.; Zhang, X.;
2009, 3585.
Zhou, L.; Wu, W.; Zhang, X. J. Org. Chem. 2011, 76, 332. (c) Geng,
H.; Zhang, W.; Chen, J.; Hou, G.; Zhou, L.; Zou, Y.; Wu, W.;
Zhang, X. Angew. Chem. Int. Ed. 2009, 48, 6052.
(
10) For metal-catalyzed stereoselective synthesis of (Z)-enamides,
see ref. 6. For the formation of (Z)-enamides relying on base-
promoted rearrangement of propargylic hydroxylamines, see
ref. 3c. For the oxidation of α-amido esters to (Z)-enamides
using Dess–Martin periodinate, see: Nicolaou, K. C.; Mathison,
C. J. N. Angew. Chem. Int. Ed. 2005, 44, 5992.
(
2) (a) Davyt, D.; Entz, W.; Fernandez, R.; Mariezcurrena, R.;
Mombru, A. W.; Saldana, J.; Dominguez, L.; Coll, J.; Manta, E.
J. Nat. Prod. 1998, 61, 1560. (b) Yet, L. Chem. Rev. 2003, 103,
4283.
(11) Mphahlele, M. J. Molecules 2009, 14, 5308.
(
3) (a) Zheng, M.; Huang, L.; Huang, H.; Li, X.; Wu, W.; Jiang, H. Org.
Lett. 2014, 16, 5906. (b) James, C. A.; DeRoy, P.; Duplessis, M.;
Edwards, P. J.; Halmos, T.; Minville, J.; Morency, L.; Morin, S.;
Simoneau, B.; Tremblay, M.; Bethell, R.; Cordingley, M.; Duan, J.;
Lamorte, L.; Pelletier, A.; Rajotte, D.; Salois, P.; Tremblay, S.;
Sturino, C. F. Bioorg. Med. Chem. Lett. 2013, 23, 2781. (c) Gayon,
E.; Szymczyk, M.; Gérard, H.; Vrancken, E.; Campagne, J.-M.
J. Org. Chem. 2012, 77, 9205. (d) Wu, J.; Xu, W.; Yu, Z.-X.; Wang,
J. J. Am. Chem. Soc. 2015, 137, 9489. (e) Yamamoto, S.; Okamoto,
K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Org. Lett. 2012, 14,
(
12) (a) Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc. 2010, 132, 13226.
(b) Zuo, Z.; Ma, D. Angew. Chem. Int. Ed. 2011, 50, 12008. (c) Zi,
W.; Xie, W.; Ma, D. J. Am. Chem. Soc. 2012, 134, 9126. (d) Teng,
M.; Zi, W.; Ma, D. Angew. Chem. Int. Ed. 2014, 53, 1814.
(
13) For selected reviews, see: (a) Zhao, J.; Gao, W.; Chang, H.; Li, X.;
Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941. (b) Hu, F.;
Gao, W.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35,
1848. (c) Finkbeiner, P.; Nachtsheim, B. J. Synthesis 2013, 45,
979. For selected examples, see: (d) Tian, X.; Song, L.; Li, E.;
Wang, Q.; Yu, W.; Chang, J. RSC Adv. 2015, 5, 62194.
3
(
6
182. (f) Dash, J.; Reissig, H.-U. Chem. Eur. J. 2009, 15, 6811.
g) Fürstner, A.; Weintritt, H.; Hupperts, A. J. Org. Chem. 1995,
0, 6637.
4) (a) Hommes, P.; Berlin, S.; Reissig, H.-U. Synthesis 2013, 3288.
b) Shabana, R.; Rasmussen, J. B.; Lawesson, S.-O. Tetrahedron
981, 37, 1819.
5) (a) Kang, Y.-W.; Cho, Y.-J.; Han, S.-J.; Jang, H.-Y. Org. Lett. 2016,
(
14) (a) Gao, W.-C.; Hu, F.; Huo, Y.-M.; Chang, H.-H.; Li, X.; Wei, W.-L.
Org. Lett. 2015, 17, 3914. (b) Gao, W.-C.; Zhao, J.-J.; Hu, F.;
Chang, H.-H.; Li, X.; Wei, W.-L. RSC Adv. 2015, 5, 25222. (c) Gao,
W.-C.; Zhao, J.-J.; Hu, F.; Chang, H.-H.; Li, X.; Wei, W.-L. RSC Adv.
(
(
(
(
1
2014, 4, 49329. (d) Gao, W.-C.; Jiang, S.; Wang, R.-L.; Zhang, C.
Chem. Commun. 2013, 49, 4890.
(
(
(
15) (a) Khan, A. T.; Parvin, T.; Choudhury, L. H. Tetrahedron 2007,
18, 272. (b) Kim, S. M.; Lee, D.; Hong, S. H. Org. Lett. 2014, 16,
63, 5593. (b) Xu, L.-W.; Xia, C.-G.; Hu, X.-X. Chem. Commun.
6168.
2003, 2570.
6) (a) Lechel, T.; Dash, J.; Eidamshaus, C.; Brüdgam, I.; Lentz, D.;
Reissig, H.-U. Org. Biomol. Chem. 2010, 8, 3007. (b) Bera, M. K.;
Reissig, H.-U. Synthesis 2010, 2129. (c) Eidamshaus, C.; Kumar,
R.; Bera, M. K.; Reissig, H.-U. Beilstein J. Org. Chem. 2011, 7, 962.
7) (a) Panda, N.; Jena, A. K.; Raghavender, M. ACS Catal. 2012, 2,
16) For the corresponding structures of oxazoline and oxazole
derivatives, see ref. 13a. For the screening of bases and results of
catalytic reaction studies, see Supporting Information.
17) General Procedure for Iodine-Mediated Oxidative Dehydro-
genation
(
539. (b) Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do, Y.; Kim, S.
A 10 mL oven-dried reaction vessel was charged with 1a (53
mg, 0.2 mmol), DABCO (67 mg, 0.6 mmol), and iodine (61 mg,
K.; Chang, S. J. Am. Chem. Soc. 2006, 128, 12954. (c) Gogoi, J.;
Gogoi, P.; Boruah, R. C. Eur. J. Org. Chem. 2014, 3483. (d) Panda,
N.; Mothkuri, R. J. Org. Chem. 2012, 77, 9407. (e) Ding, R.; Zhang,
Q.-C.; Xu, Y.-H.; Loh, T.-P. Chem. Commun. 2014, 50, 11661.
8) (a) Cherton, J.-C.; Desbene, P.-L.; Bazinet, M.; Lanson, M.;
Convert, O.; Basselier, J.-J. Can. J. Chem. 1985, 63, 86.
0.24 mmol) in p-xylene (2.0 mL). The resulting solution was
stirred at 60 °C for 5 h. After the reaction was complete, sat.
Na S O aq solution (10 mL) was added to quench the reaction,
2
2
3
(
and the mixture was extracted by EtOAc (3 × 10 mL). The
organic layer was separated and dried over anhydrous Na SO .
2
4
(b) Cherton, J.-C.; Bazinet, M.; Bolze, M.-M.; Lanson, M.;
After the removal of the solvent in vacuo, the residue was puri-
fied by flash column chromatography with PE–EtOAc (9:1) to
give 2a.
Desbene, P.-L. Can. J. Chem. 1985, 63, 2601.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E