3362
M. I. Burguete et al. / Tetrahedron Letters 51 (2010) 3360–3363
Table 2
Supplementary data
Photooxidation of 1 to 2 (photosensitized oxidation)a
Entry
Photocatalyst
Solvent
Yield of 2 (%)
Supplementary data associated with this article can be found, in
1
2
3
4
5
6
7
8
RBb
MeOH
MeOH
MeOH
MeOH
CHCl3
CHCl3
CHCl3
CHCl3
79
70
68
71
100
65
PGelc
P80c
P20c
RBb
References and notes
1. (a) Van Doorslaer, C.; Peeters, A.; Mertens, P.; Vinckier, C.; Binnemans, K.; De
Vos, D. Chem. Commun. 2009, 6439–6441; (b) Alaerts, L.; Wahlen, J.; Jacobs, P.
A.; De Vos, D. E. Chem. Commun. 2008, 1727–1737.
PGelc
P80c
P20c
67
100
2. Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103.
3. (a) Greer, A. Acc. Chem. Res. 2006, 39, 797–804; (b) Clennan, L. E.; Pace, A.
Tetrahedron 2005, 61, 6665–6691; (c) DeRosa, M. C.; Crutchley, R. J. Coord.
Chem. Rev. 2002, 233, 351–371.
a
Irradiation conditions: 125 W medium pressure Hg lamp; light filter: FeCl3
0.1 M aqueous solution (450 nm cut-off), air equilibrated, stirred solutions, t = 6 h,
4. (a) Lacombe, S.; Soumillion, J. P.; El Kadib, A.; Pigot, T.; Blanc, S.; Brown, R.;
Oliveros, E.; Cantau, C.; Saint-Cricq, P. Langmuir 2009, 25, 11168–11179; (b)
Saint-Cricq, P.; Pigot, T.; Nicole, L.; Sanchez, C.; Lacombe, S. Chem. Commun.
2009, 5281–5283; (c) Ribeiro, S. M.; Serra, A. C.; Rocha Gonsalves, A. M. D. J.
Catal. 2008, 256, 331–337; (d) Ribeiro, S. M.; Serra, A. C.; Gonsalves, A. M. D. R.
Tetrahedron 2007, 63, 7885–7891; (e) Wang, S.; Gao, R.; Zhou, F.; Selke, M. J.
Mater. Chem. 2004, 14, 487–493; (f) Wahlen, J.; De Vos, D. E.; Jacobs, P. A.;
Alsters, P. L. Adv. Synth. Catal. 2004, 346, 152–164.
[1] = 3 Â 10À2 M.
[RB] = 6 Â 10À5 M.
b
4 mg of polymer/ml (this represents formally 1.2 Â 10À5 M of RB for P20 and
c
P80 and 6 Â 10À4 M of RB for PGel).
also worth noting that the spectral shift in the excitation and emis-
sion bands for attached RB (Fig. 2) is evidenced for an important
hydrophobic environment of RB close to the polystyrenic matrix.6
In methanol, the performances of all the four photocatalysts are
quite similar, as can be seen in Table 2, with slightly better effi-
ciency for RB. But in chloroform RB and P20 are the most effective
systems (far better than the classical gel-type photosensitizer),
with the additional advantage, in comparison to RB, of ease of sen-
sitizer removal after the reaction by means of a simple filtration
step. A striking fact that is observed from these irradiations is that
5. Neckers, D. C. J. Photochem. Photobiol. A: Chem. 1989, 47, 1–29.
6. (a) Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53, 2773–2776; (b)
Paczkowski, J.; Neckers, D. C. Macromolecules 1985, 18, 2412–2418; (c)
Paczkowski, J.; Neckers, D. C. Macromolecules 1985, 18, 1245–1253; (d)
Schaap, A. P.; Thayer, A. L.; Zaklika, K. A.; Valenti, P. C. J. Am. Chem. Soc. 1979,
101, 4016–4017; (e) Schaap, A. P.; Thayer, A. L.; Blossey, E. C.; Neckers, D. C. J.
Am. Chem. Soc. 1975, 97, 3741–3745; (f) Bloosey, E. C.; Neckers, D. C.; Thayer, A.
L.; Schaap, A. P. J. Am. Chem. Soc. 1973, 95, 5820–5822.
7. (a) Koizumi, H.; Kimata, Y.; Shiraishi, Y.; Hirai, T. Chem. Commun. 2007, 1846–
1848; (b) Nowakowska, M.; Kepczynski, M.; Dabrowska, M. Macromol. Chem.
Phys. 2001, 202, 1679–1688; (c) Prat, F.; Foote, C. S. Photochem. Photobiol. 1998,
67, 626–627.
8. Burguete, M. I.; Galindo, F.; Gavara, R.; Luis, S. V.; Moreno, M.; Thomas, P.;
Russell, D. A. Photochem. Photobiol. Sci. 2009, 8, 37–44.
despite P20 and P80 being 50 times less loaded in RB (3
lmol/g)
9. Esser, P.; Pohlmann, B.; Scharf, H. D. Angew. Chem., Int. Ed. Engl. 1994, 33, 2009–
2023. and references cited therein.
than PGel (150 mol/g), the synthetic efficiency of such porous
l
resins is comparable, or clearly better in the case of P20 in chloro-
form, than the Merrifield resin-derived photosensitizer. The reason
for such behavior could be due to the absence of aggregation be-
tween units of RB, a fact already observed by Neckers et al. for
other gel-type polymers but not described to date for porous-type
(rigid) matrices. Additionally, the low particle size also allows get-
ting more dispersed suspensions in the case of the porous mono-
lithic polymers. As a matter of fact, when P20 is placed in
chloroform or methanolic solutions, a uniform colloidal suspension
is readily formed, in clear contrast with PGel, which forms visible
aggregates separated from the bulk solution. However, the differ-
ences between P20 and P80 cannot be explained at the moment
with the current data in hand, and will be the matter of future re-
search, although the pore diameter of the parent polymeric mono-
liths probably is playing an important role. On the other hand, it is
not expected that the effect of the porous matrix would be an in-
crease in the quantum yield of 1O2 production (very high for RB:
ca. 0.8 in polar protic solvents5). Likely, the high specific surface
of P20 creates the appropriate conditions for a high adsorption of
substrate, and hence enhances the global yield of the oxidation
reaction due to the high local concentration of 2-furoic acid close
to the source of singlet oxygen.
10. (a) Xu, H.; Chan, W.-K.; Ng, D. K. P. Synthesis 2009, 1791–1796; (b) Talukdar, B.;
Takaguchi, Y.; Yanagimoto, Y.; Tsuboi, S.; Ichihara, M.; Ohta, K. Bull. Chem. Soc.
Jpn. 2006, 79, 1983–1987; (c) Rodríguez, S.; Vidal, A.; Monroig, J. J.; González, F.
V. Tetrahedron Lett. 2004, 45, 5359–5361; (d) Moradei, O. M.; Paquette, L. A.;
Peschko, C.; Danheiser, R. L. Org. Synth. 2003, 80, 66–74; Kumar, P. et al Green
Chem. 2000; (e) Kumar, P.; Pandey, R. K. Green Chem. 2000, 2, 29–31; (f) Braun,
A. M.; Dahn, H.; Gassmann, E.; Gerothanassiss, I.; Jakob, L.; Kateva, J.; Martinez,
C. G.; Oliveros, E. Photochem. Photobiol. 1999, 70, 868–874; (g) Tokuyama, H.;
Nakamura, E. J. Org. Chem. 1994, 59, 1135–1138; (h) de Jong, J. C.; van Bolhuis,
F.; Feringa, B. L. Tetrahedron: Asymmetry 1991, 2, 1247–1262; (i) Navio, J. A.;
Mota, J. F.; Adrian, M. A. P.; Gomez, M. G. J. Photochem. Photobiol. A: Chem. 1990,
52, 91–95; (j) Gollnick, K. Tetrahedron 1985, 41, 2057; Gollnick, K.; Griesbeck, A.
Tetrahedron 1985, 41, 2057–2068; (k) White, J. D.; Carter, J. P.; Kezar, H. S. J. Org.
Chem. 1982, 47, 929–932.
11. (a) Basabe, P.; Bodero, O.; Marcos, I. S.; Díez, D.; Blanco, A.; de Román, M.;
Urones, J. G. J. Org. Chem. 2009, 74, 7750–7754; (b) Marcos, I. S.; Castañeda, L.;
Basabe, P.; Díez, D.; Urones, J. G. Tetrahedron 2009, 65, 9256–9263; (c) Marcos,
I. S.; Castañeda, L.; Basabe, P.; Díez, D.; Urones, J. G. Tetrahedron 2008, 64,
10860–10866; (d) Montagnon, T.; Tofi, M.; Vassilikogiannakis, G. Acc. Chem.
Res. 2008, 41, 1001–1011; (e) Basabe, P.; Bodero, O.; Marcos, I. S.; Díez, D.; De
Román, M.; Blanco, A.; Urones, J. G. Tetrahedron 2007, 63, 11838–11843; (f)
Basabe, P.; Delgado, S.; Marcos, I. S.; Díez, D.; Diego, A.; de Román, M.; Sanz, F.;
Urones, J. G. Tetrahedron 2007, 63, 8939–8948; (g) Margaros, I.;
Vassilikogiannakis, G. J. Org. Chem. 2007, 72, 4826–4831; (h) Margaros, L.;
Montagnon, T.; Tofi, M.; Pavlakos, E.; Vassilikogiannakis, G. Tetrahedron 2006,
62, 5308–5317; (i) Basabe, P.; Delgado, S.; Marcos, I. S.; Díez, D.; Diego, A.; De
Román, M.; Urones, J. G. J. Org. Chem. 2005, 70, 9480–9485; (j) Cheung, A. K.;
Murelli, R.; Snapper, M. L. J. Org. Chem. 2004, 69, 5712–5719; (k) Marcos, I. S.;
Pedrero, A. B.; Sexmero, M. J.; Díez, D.; Basabe, P.; García, N.; Moro, R. F.;
Broughton, H. B.; Mollinedo, F.; Urones, J. G. J. Org. Chem. 2003, 68, 7496–7504;
(l) Miyaoka, H.; Yamanishi, M.; Kajiwara, Y.; Yamada, Y. J. Org. Chem. 2003, 68,
3476–3479; (m) Vassilikogiannakis, G.; Stratakis, M. Angew. Chem., Int. Ed.
2003, 42, 5465–5468; (n) Demeke, D.; Forsyth, C. J. Org. Lett. 2003, 5, 991–994;
(o) Demeke, D.; Forsyth, C. J. Tetrahedron 2002, 58, 6531–6544; (p) Brohm, D.;
Philippe, N.; Metzger, S.; Bhargava, A.; Muller, O.; Lieb, F.; Waldmann, H. J. Am.
Chem. Soc. 2002, 124, 13171–13178; (q) Cheung, A. K.; Snapper, M. L. J. Am.
Chem. Soc. 2002, 124, 11584–11585; (r) Corey, E. J.; Roberts, B. E. J. Am. Chem.
Soc. 1997, 119, 12425–12431.
In summary, the utilization of photochemically active porous
matrices for the synthesis of butenolide 2, from furoic acid 1, has
been demonstrated. This kind of materials represents a practical
alternative to both gel-type resins and soluble RB. Current work
is in progress in order to know the mechanistic details of the ob-
served enhanced reactivity and to expand the number of porous
polymers used as supports.
12. Summarized preparation of polystyrene matrices: The monomer/porogens
mixture (4/6 w/w) with 1 wt % of AIBN (respect to monomers) was purged
with N2 and heated at 80 °C for 24 h. The resulting polymer was washed with
THF in a Soxhlet apparatus for 24 h and dried in a vacuum oven. Summarized
procedure for the grafting of RB: The chloromethylated resin (1.00 g) and Rose
Bengal sodium salt (1.07 g) were reacted in DMF (25 ml) at 60 °C for 20 h. Then,
the mixture was filtered through a sintered-glass funnel and the resin was
washed with 100 ml portions of several solvents and finally with methanol in a
Soxhlet apparatus. Finally the polymer was dried in a vacuum oven.
Acknowledgments
Financial support from the Spanish MICINN (CTQ2008-04412/
BQU) and F. Caixa Castelló-UJI (project P1-1B-2009-58) is acknowl-
edged. F.G. and R.G. thank the support from MICINN (Ramón y
Cajal and FPI programs, respectively).