Communication
ChemComm
(
4
d) K. Ishihara, M. Fushimi and M. Akakura, Acc. Chem. Res., 2007,
0, 1049; (e) E. J. Corey, Angew. Chem., Int. Ed., 2009, 48, 2100.
2
For selected examples of asymmetric Diels–Alder reactions of cyclo-
pentadiene, see: (a) S. Kobayashi and H. Ishitani, J. Am. Chem. Soc.,
1994, 116, 4083; (b) D. A. Evans, S. J. Miller, T. Lectka and P. von
Matt, J. Am. Chem. Soc., 1999, 121, 7559; (c) A. Sakakura, R. Kondo,
Y. Matsumura, M. Akakura and K. Ishihara, J. Am. Chem. Soc., 2009,
1
31, 17762; (d) Z. L. Shen, H. L Cheong, Y. C. Lai, W. Y. Loo and
T. P. Loh, Green Chem., 2012, 14, 2626; (e) T. F. Kang, Z. Wang,
L. L. Lin, Y. T. Liao, Y. H. Zhou, X. H. Liu and X. M. Feng, Adv. Synth.
Catal., 2015, 357, 2045.
3
4
N. A. Lozinskaya, M. S. Volkova, M. Y. Seliverstov, V. V. Temnov,
S. E. Sosonyuk, M. V. Proskurnina and N. S. Zefirov, Mendeleev
Commun., 2014, 24, 260.
(a) S. B. Herzon, N. A. Calandra and S. M. King, Angew. Chem., Int. Ed.,
2011, 50, 8863; (b) S. M. King, N. A. Calandra and S. B. Herzon, Angew.
Chem., Int. Ed., 2013, 52, 3642; (c) N. A. Calandra, S. M. King and
S. B. Herzon, J. Org. Chem., 2013, 78, 10031.
A. Madin, C. J. O’Donnell, T. Oh, D. W. Old, L. E. Overman and
M. J. Sharp, J. Am. Chem. Soc., 2005, 127, 18054.
5
Scheme 4 Proposed stereochemical model.
6
7
G. Desimoni, G. Faita and P. Quadrelli, Chem. Rev., 2013, 113, 5924.
(a) M. P. Sibi, Z. Ma, K. Itoh, N. Prabagaran and C. P. Jasperse,
Org. Lett., 2005, 7, 2349; (b) H. Suga, Y. Furihata, A. Sakamoto,
K. Itoh, Y. Okumura, T. Tsuchida, A. Kakehi and T. Baba, J. Org.
Chem., 2011, 76, 7377; (c) L. Dong, C. Geng and P. Jiao, J. Org. Chem.,
On the basis of the above experiments, our previous work and
the absolute configuration of the products, possible transition
state models were postulated. Firstly, the N-oxides and amide
2
015, 80, 10992.
8
9
O. Corminboeuf and P. Renaud, Org. Lett., 2002, 4, 1735.
X.-B. Chen, L. Zhu, L. Fang, S.-J. Yan and J. Lin, RSC Adv., 2014,
4, 9926.
0 S. Zhang, Y.-C. Luo, X.-Q. Hu, Z.-Y. Wang, Y.-M. Liang and P.-F. Xu,
J. Org. Chem., 2015, 80, 7288.
1 (a) S. Otto, F. Bertoncin and J. B. F. N. Engberts, J. Am. Chem. Soc.,
1996, 118, 7702; (b) S. Otto, G. Boccaletti and J. B. F. N. Engberts,
J. Am. Chem. Soc., 1998, 120, 4238; (c) S. Otto and J. B. F. N. Engberts,
J. Am. Chem. Soc., 1999, 121, 6798; (d) M. T. Reetz and N. Jiao, Angew.
Chem., Int. Ed., 2006, 45, 2416; (e) G. Roelfes, A. J. Boersma and
B. L. Feringa, Chem. Commun., 2006, 635; ( f ) S. Barroso, G. Blay and
J. R. Pedro, Org. Lett., 2007, 9, 1983; (g) J. Podtetenieff, A. Taglieber,
E. Bill, E. J. Reijerse and M. T. Reetz, Angew. Chem., Int. Ed., 2010,
2
oxygens of L-RaPr coordinated to Ni(II) to form a six membered
chelating ring. Then, 2,3-dioxopyrrolidine 1d coordinates to the
chiral catalyst L-RaPr /Ni(OTf) with it’s two carbonyl groups
1
1
2
2
through a bidentate fashion, while 4a coordinates with the
carbonyl group and the nitrogen atom of pyridine, forming a
rigid octahedral complex. The cyclopentadiene prefers to attack
the dienophiles from the Re-face since the Si-face is shielded by
the amide moiety, leading to the formation of product 3d with the
(1R,2R,3S,4S)-configuration (Scheme 4, TS1), and product 5a with
the (1S,2R,3R,4R)-configuration (Scheme 4, TS2).
4
9, 5151; (h) A. Livieri, M. Boiocchi, G. Desimoni and G. Faita,
0
In summary, we have developed an efficient chiral N,N -dioxide/
Chem. – Eur. J., 2011, 17, 516; (i) C. Wang, G. Jia, J. Zhou, Y. Li, Y. Liu,
S. Lu and C. Li, Angew. Chem., Int. Ed., 2012, 51, 9352; ( j) L. Zheng,
A. Marcozzi, J. Y. Gerasimov and A. Herrmann, Angew. Chem., Int. Ed.,
Ni(OTf) complex system for the asymmetric Diels–Alder reactions
2
of cyclopentadiene with 2,3-dioxopyrrolidines and 2-alkenoyl
pyridines. Both reactions proceeded in high activities and high
levels of stereocontrol. The corresponding chiral bridged com-
pounds with four adjacent stereocenters were obtained in up to
2014, 53, 7599; (k) G. Desimoni, G. Faita and P. Quadrelli, Chem. Rev.,
2014, 114, 6081; (l) S. Park, I. Okamura, S. Sakashita, J. H. Yum,
C. Acharya, L. Gao and H. Sugiyama, ACS Catal., 2015, 5, 4708.
2 For selected examples from our research group, see: (a) X. H. Liu,
L. L. Lin and X. M. Feng, Acc. Chem. Res., 2011, 44, 574; (b) K. Shen,
X. H. Liu, L. L. Lin and X. M. Feng, Chem. Sci., 2012, 3, 327;
1
97% yield, 95 : 5 dr and 97% ee. Furthermore, possible transition
(
7
c) K. Zheng, L. L. Lin and X. M. Feng, Acta Chim. Sin., 2012,
0, 1785; (d) M. S. Xie, X. X. Wu, G. Wang, L. L. Lin and
models were proposed to explain the stereochemistry. Further
applications of the catalysts are underway in our laboratory.
We appreciate the National Natural Science Foundation of China
X. M. Feng, Acta Chim. Sin., 2014, 72, 856; (e) H. F. Zheng, P. He,
Y. B. Liu, Y. L. Zhang, X. H. Liu, L. L. Lin and X. M. Feng,
Chem. Commun., 2014, 50, 8794; ( f ) Y. H. Zhou, Y. Zhu, L. L. Lin,
Y. L. Zhang, J. F. Zheng, X. H. Liu, L. L. Lin and X. M. Feng,
Chem. – Eur. J., 2014, 20, 16753; (g) X. H. Liu, L. L. Lin and
X. M. Feng, Org. Chem. Front., 2014, 1, 298; (h) H. F. Zheng,
X. H. Liu, C. R. Xu, Y. Xia, L. L. Lin and X. M. Feng, Angew. Chem.,
Int. Ed., 2015, 54, 4032; (i) Y. L. Zhang, N. Yang, X. H. Liu, J. Gou,
X. Y. Zhang, L. L. Lin, C. W. Hu and X. M. Feng, Chem. Commun.,
2015, 51, 8432; ( j) J. F. Zheng, L. L. Lin, K. Fu, H. F. Zheng, X. H. Liu
and X. M. Feng, J. Org. Chem., 2015, 80, 8836.
(No. 21290182, 21321061, and 21572136) for financial support.
Notes and references
1
For selected reviews on Diels–Alder reaction, see: (a) D. A. Evans and
J. S. Johnson, in Comprehensive Asymmetric Catalysis, ed. E. N.
Jacobsen, A. Pfaltz and H. Yamamoto, Springer, New York, 1999,
vol. 3, pp. 1177; (b) K. C. Nicolaou, S. A. Snyder, T. Montagnon and
G. Vassilikogiannakis, Angew. Chem., Int. Ed., 2002, 41, 1668; 13 CCDC 1438596 (3d).
c) A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713; 14 See the ESI† for details.
(
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016