ACS Catalysis
Experimental procedures, full spectroscopic and MS data
Research Article
(8) (a) Ortgies, S.; Depken, C.; Breder, A. Org. Lett. 2016, 18, 2856−
2859. (b) Leisering, S.; Riano, I.; Depken, C.; Gross, L.; Weber, M.;
Lentz, D.; Zimmer, R.; Stark, C. B. W.; Breder, A.; Christmann, M.
Org. Lett. 2017, 19, 1478−1481.
for all new compounds, kinetic and computational data,
(9) For seminal reports on stoichiometric selenenylation and
deselenenylation reactions of alkenes using O2 as the terminal oxidant,
see: (a) Pandey, G.; Soma Sekhar, B. B. V. J. Org. Chem. 1992, 57,
4019−4023. (b) Pandey, G.; Soma Sekhar, B. B. V. J. Org. Chem. 1994,
59, 7367−7372. (c) Pandey, G.; Gadre, S. R. Acc. Chem. Res. 2004, 37,
201−210. For a photosensitized selenenylation of alkenes using
NaNO2 as an oxidant, see: Bushan, K. M.; Gopal, V. R.; Reddy, A. M.;
Rao, V. J. J. Photochem. Photobiol., A 1998, 117, 99−104.
(10) (a) Shahzad, S. A.; Venin, C.; Wirth, T. Eur. J. Org. Chem. 2010,
2010, 3465−3472. (b) Singh, F. V.; Wirth, T. Org. Lett. 2011, 13,
6504−6507.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
Notes
The authors declare no competing financial interest.
(11) (a) Mellegaard, S. R.; Tunge, J. A. J. Org. Chem. 2004, 69,
8979−8981. (b) Mellegaard-Waetzig, S. R.; Wang, C.; Tunge, J. A.
Tetrahedron 2006, 62, 7191−7198.
ACKNOWLEDGMENTS
■
(12) (a) Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew.
This work was financially supported by the German Research
Council (DFG, Emmy Noether Fellowship to A.B. (BR 4907/
1-1) and J.R. (RE 3630)), the Fonds der Chemischen Industrie
(FCI, Chemiefonds Fellowship to S.O.), and the state of Lower
Saxony (Georg-Christoph-Lichtenberg Fellowship to K.R.). We
thank Prof. Dr. Lutz Ackermann (University of Gottingen,
Gottingen, Germany) for the generous donation of solvents
Chem., Int. Ed. 2013, 52, 8952−8956. (b) Kratzschmar, F.; Kaßel, M.;
̈
Delony, D.; Breder, A. Chem. - Eur. J. 2015, 21, 7030−7034.
(c) Ortgies, S.; Breder, A. Org. Lett. 2015, 17, 2748−2751. (d) Deng,
Z.; Wei, J.; Liao, L.; Huang, H.; Zhao, X. Org. Lett. 2015, 17, 1834−
1837. (e) Kawamata, Y.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc.
2016, 138, 5206−5209.
̈
̈
(13) For an early representative example of a Pd-catalyzed oxidase
type lactonization, see: (a) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B.
M. J. Am. Chem. Soc. 2005, 127, 17778−17788. For representative
examples of asymmetric halolactonizations, see: (b) Tan, C. K.; Zhou,
L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738−2741. (c) Chen, J.; Zhou,
L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2012, 77, 999−1009.
(14) For representative examples, see: (a) Back, T. G.; Dyck, B. P.
Chem. Commun. 1996, 22, 2567−2568. (b) Tiecco, M.; Testaferri, L.;
Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Chem. -
Eur. J. 2002, 8, 1118−1124. (c) Browne, D. M.; Niyomura, O.; Wirth,
T. Org. Lett. 2007, 9, 3169−3171. (d) Alberto, E. E.; Braga, A. L.;
Detty, M. R. Tetrahedron 2012, 68, 10476−10481.
and technical equipment. We thank Prof. Dr. Franc Meyer
(University of Gottingen, Gottingen, Germany) for the donation
̈
̈
of 18O2. J.K. and C.M.T. thank the Adolf-Messer foundation and
the German Research Council (DFG, TH1115/9-1) for funding.
REFERENCES
■
(1) (a) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53,
8824−8838. (b) Wu, Y.; Wang, J.; Mao, F.; Kwong, F. Y. Chem. - Asian
J. 2014, 9, 26−47. (c) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N.
L.; Muldoon, M. J. Chem. Commun. 2014, 50, 4524−4543.
(d) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756−
1766. (e) Wendlandt, A. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2015,
54, 14638−14658. (f) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi,
R.; Lei, A. Chem. Rev. 2015, 115, 12138−12204.
(2) (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400−3420.
(b) Stahl, S. S. Science 2005, 309, 1824−1826. (c) McDonald, R. I.;
Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981−3019. (d) Wendlandt,
A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062−
11087. (e) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851−
863.
(3) For recent representative examples of chemical oxidase reactions
catalyzed by transition-metal compounds other than Cu and Pd
complexes, see the following. Rh: (a) Fabry, D. C.; Zoller, J.; Raja, S.;
Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 10228−10231. Ru:
(b) Fabry, D. C.; Ronge, M. A.; Zoller, J.; Rueping, M. Angew. Chem.,
Int. Ed. 2015, 54, 2801−2805. Co: (c) Mei, R.; Wang, H.; Warratz, S.;
Macgregor, S. A.; Ackermann, L. Chem. - Eur. J. 2016, 22, 6759−6763.
(d) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß,
C.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 264−267.
(4) For representative examples, see: (a) Chen, X.; Hao, X.-S.;
Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790−6791.
(b) Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B.
J. Am. Chem. Soc. 2009, 131, 7956−7957. (c) Miyasaka, M.; Hirano,
K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13,
359−361. (d) Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.; Vermeulen,
N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138, 1265−
1272.
(15) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int.
Ed. 2009, 48, 2854−2867.
(16) Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126,
1671−1682. In this reference, the reduction potential of 3+* was
reported as 1.98 V vs NHE. For a more direct comparison, we have
presented the corresponding reduction potential of 1.74 V vs SCE.
(17) Kunai, A.; Harada, J.; Izumi, J.; Tachihara, H.; Sasaki, K.
Electrochim. Acta 1983, 28, 1361−1366.
(18) (a) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012,
134, 18577−18580. (b) Shono, T. Electroorganic Chemistry as a New
Tool in Organic Synthesis; Springer Verlag: Heidelberg, 1984.
(19) To exclude the possibility that H2O2 might decompose in the
mere presence of the reaction constituents, we prepared control
solutions to which hydrogen peroxide was added. In each of these
experiments, even at low concentrations of hydrogen peroxide, we
were able to detect H2O2, thus indicating that hydrogen peroxide is
not present in measureable amounts during regular catalytic
conditions. For a detailed description of these control experiments,
(20) For a comprehensive description of the labeling experiments,
(21) (a) Bielski, B. H. J.; Allen, A. O. J. Phys. Chem. 1977, 81, 1048−
1050. (b) Li, Y.; Zhong, G.; Yu, H.; Wang, H.; Peng, F. Phys. Chem.
Chem. Phys. 2015, 17, 21950−21959.
(22) For this part of the investigations, we followed a procedure
reported by Glorius et al., which represents a modified version of an
earlier report by Melchiorre et al. For details, see: (a) Wozniak, Ł.;
Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678−5681.
(b) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem.
Sci. 2016, 7, 89−93.
(5) Yoo, K. S.; O’Neill, J.; Sakaguchi, S.; Giles, R.; Lee, J. H.; Jung, K.
W. J. Org. Chem. 2010, 75, 95−101.
(6) Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.; Hawkins, J. M.;
Martinelli, J. R.; Johnson, T. E.; Root, T. W.; Stahl, S. S. Org. Process
Res. Dev. 2015, 19, 1537−1543.
(23) For related mechanistic investigations, see: Denmark, S. E.;
Edwards, M. G. J. Org. Chem. 2006, 71, 7293−7306.
(7) Ortgies, S.; Breder, A. ACS Catal. 2017, 7, 5828−5840.
7585
ACS Catal. 2017, 7, 7578−7586