10.1002/cctc.201900413
ChemCatChem
FULL PAPER
surface copper species obtained previously from the H2-TPR
consumption.
[4]
[5]
[6]
[7]
a) Y. Liu, K. Murata, M. Inaba, I. Takahara, Fuel Process. Technol.
2013, 110, 206-213; b) H. Li, Y. Cui, Q. Liu, W.-L. Dai, ChemCatChem
2018, 10, 619-624.
a) C. Wen, A. Yin, Y. Cui, X. Yang, W.-L. Dai, K. Fan, Appl. Catal. A
2013, 458, 82-89; b) B. Wang, C. Wen, Y. Cui, X. Chen, Y. Dong, W.-L.
Dai, RSC Adv. 2015, 5, 29040-29047.
The concentrations of oxygen vacancies in CeO2 nanocrystals were
measured by oxygen pulse injection method using a Micromeritics
Autochem II 2920 as well. After reduced in 523 K for 1 h, the sample was
treated under flowing He to remove the physisorbed molecular. Then the
injection pulses of 10%O2/He were carried out until the consumption
peaks became stable. To simulate the cyclical oxygen activity, the above
process was repeated. The oxygen reuptake was used to characterize
the oxygen mobility in CeO2, which is more representative of the pool of
available surface sites for oxygen transfer during actual operation of
catalysts.[29]
a) Y. Zhu, X. Kong, S. Zhu, F. Dong, H. Zheng, Y. Zhu, Y.-W. Li, Appl.
Catal. B 2015, 166–167, 551-559; b) Y. Zhu, X. Kong, D.-B. Cao, J. Cui,
Y. Zhu, Y.-W. Li, ACS Catal. 2014, 4, 3675-3681.
X. Zheng, H. Lin, J. Zheng, X. Duan, Y. Yuan, ACS Catal. 2013, 3,
2738-2749.
[8]
[9]
Q. Hu, L. Yang, G. Fan, F. Li, J. Catal. 2016, 340, 184-195.
D. Brands, E. Poels, T. Krieger, O. Makarova, C. Weber, S. Veer, A.
Bliek, Catal. Lett. 1996, 36, 175-181.
[10] Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, ACS Catal.
2018, 8, 7113-7119.
In situ FTIR of CO adsorption was conducted to measure the amount of
surface Cu+ species using a Nicolet 6700 spectrometer with in situ cell
and vacuum system. The sample disc was settled into the cell and
reduced in the flow of 10% H2/Ar at 523 K for 1 h. After cooled to 303 K
in He flow, the sample was exposed to CO at 303 K for 30 min. After that,
the sample was vacuumed and spectra were collected. The last
spectrum was confirmed to be no differences with the precious one.
[11] a) G. Vilé, S. Colussi, F. Krumeich, A. Trovarelli, J. Pérez-Ramírez,
Angew. Chem. Int. Ed. 2014, 53, 12069-12072; b) Q. Li, Y. Zhang, G.
Chen, J. Fan, H. Lan, Y. Yang, J. Catal. 2010, 273, 167-176; c) Y.H.
Taufiq-Yap, Sudarno, U. Rashid, Z. Zainal, Appl. Catal. A 2013, 468,
359-369.
[12] C. Sun, H. Li, L. Chen, Energy Environ. Sci. 2012, 5, 8475-8505.
[13] a) A.K.P. Mann, Z. Wu, F.C. Calaza, S.H. Overbury, ACS Catal. 2014,
4, 2437-2448; b) K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, J. Catal.
2005, 229, 206-212; c) X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, J. Am.
Chem. Soc. 2009, 131, 3140-3141.
In situ FTIR of MA adsorption was performed to identify whether surface
oxygen vacancies act as active sites in MA hydrogenation. After
reduction, the samples are exposed to MA at 303 K for 30 min. The
spectra of MA adsorption were collected from the beginning. After that,
the desorption of MA was carried out in He flow at 303 K until the
spectrum was not changed.
[14] S. Wang, L. Zhao, W. Wang, Y. Zhao, G. Zhang, X. Ma, J. Gong,
Nanoscale 2013, 5, 5582-5588.
[15] Y. Zhao, B. Shan, Y. Wang, J. Zhou, S. Wang, X. Ma, Ind. Eng. Chem.
Res. 2018, 57, 4526-4534.
Catalytic activity evaluation
[16] H.C. Yao, Y.F.Y. Yao, J. Catal. 1984, 86, 254-265.
[17] M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R.
Schlögl, M. Muhler, O. Hinrichsen, Angew. Chem. Int. Ed. 2014, 53,
7043-7047.
The reactivity evaluations were carried out on a fix-bed reactor. Samples
of 0.5 g calcined catalysts (40-60 meshes) were first reduced in H2 flow
at 523 K for 4 h. After cooling down to 488 K, the reaction was carried out
at 2.5 MPa with a feed flow of H2 and MA (the molar ratio of H2 to MA is
80). The products were condensed and analysed using Agilent Micro GC
6820 with an HP-INNOWAX capillary column (30 m × 0.32mm × 0.50 μm)
equipped with a flame ionization detector (FID).
[18] a) P. Munnik, M. Wolters, A. Gabrielsson, S.D. Pollington, G. Headdock,
J.H. Bitter, P.E. de Jongh, K.P. de Jong, J. Phys. Chem. C 2011, 115,
14698-14706; b) W.-W. Wang, P.-P. Du, S.-H. Zou, H.-Y. He, R.-X.
Wang, Z. Jin, S. Shi, Y.-Y. Huang, R. Si, Q.-S. Song, C.-J. Jia, C.-H.
Yan, ACS Catal. 2015, 5, 2088-2099; c) Y. Wang, J. Liao, J. Zhang, S.
Wang, Y. Zhao, X. Ma, AIChE J. 2017, 63, 2839-2849.
[19] X. Huang, M. Ma, S. Miao, Y. Zheng, M. Chen, W. Shen, Applied Catal.
A 2017, 531, 79-88.
Acknowledgements
[20] Y. Wang, Y. Zhao, J. Lv, X. Ma, ChemCatChem 2017, 9, 2085-2090.
[21] M.A.N. Santiago, M.A. Sánchez-Castillo, R.D. Cortright, J.A. Dumesic,
J. Catal. 2000, 193, 16-28.
We gratefully acknowledge supports from the National Natural
Science Foundation of China (21706184), the Natural Science
Foundation of Tianjin City (18JCQNJC06100) and the National
Postdoctoral Program for Innovative Talents of China
(BX20180211).
[22] W. Zhou, Y. Zhao, Y. Wang, S. Wang, X. Ma, ChemCatChem 2016, 8,
3663-3671.
[23] L.-F. Chen, P.-J. Guo, M.-H. Qiao, S.-R. Yan, H.-X. Li, W. Shen, H.-L.
Xu, K.-N. Fan, J. Catal. 2008, 257, 172-180.
[24] J. Zheng, J. Zhou, H. Lin, X. Duan, C.T. Williams, Y. Yuan, J. Phys.
Chem. C 2015, 119, 13758-13766.
Keywords: heterogeneous catalysis • hydrogenation • copper-
based catalyst • ethanol • CeO2 • oxygen vacancy
[25] Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.-W. Zhang,
ACS Catal. 2018, 8, 6203-6215.
[26] H. Zhou, W.L. Zhu, L. Shi, H.C. Liu, S.P. Liu, Y.M. Ni, Y. Liu, Y.L. He,
S.L. Xu, L.N. Li, Z.M. Liu, J. Mol. Catal. A 2016, 417, 1-9.
[27] a) Y. Li, S.Y. Huang, Z.Z. Cheng, S.P. Wang, Q.F. Ge, X.B. Ma, J.
Catal. 2018, 365, 440-449; b) Z. Wu, M. Li, D.R. Mullins, S.H. Overbury,
ACS Catal. 2012, 2, 2224-2234.
[1]
[2]
J. Goldemberg, Science 2007, 315, 808-810.
a) X. San, Y. Zhang, W. Shen, N. Tsubaki, Energ. Fuel. 2009, 23, 2843-
2844; b) X. Li, X. San, Y. Zhang, T. Ichii, M. Meng, Y. Tan, N. Tsubaki,
ChemSusChem 2010, 3, 1192-1199; c) G. Yang, X. San, N. Jiang, Y.
Tanaka, X. Li, Q. Jin, K. Tao, F. Meng, N. Tsubaki, Catal. Today 2011,
164, 425-428.
[28] M. Nolan, S.C. Parker, G.W. Watson, Surf. Sci. 2005, 595, 223-232.
[29] A. Chen, X. Yu, Y. Zhou, S. Miao, Y. Li, S. Kuld, J. Sehested, J. Liu, T.
Aoki, S. Hong, M.F. Camellone, S. Fabris, J. Ning, C. Jin, C. Yang, A.
Nefedov, C. Wöll, Y. Wang, W. Shen, Nature Catal. 2019.
[3]
a) D.S. Brands, E.K. Poels, A. Bliek, Appl. Catal. A 1999, 184, 279-289;
b) Y. Wang, Y. Shen, Y. Zhao, J. Lv, S. Wang, X. Ma, ACS Catal. 2015,
5, 6200-6208; c) A. Yin, X. Guo, W.-L. Dai, K. Fan, J. Phys. Chem. C
2009, 113, 11003-11013.
This article is protected by copyright. All rights reserved.