This work was supported in part by funding to P.L. from
NSF CAREER (CHE-0748504) and NIH (GM-093903).
C.F.M. was supported by the Johns Hopkins Malaria
Research Institute Pilot Grant. We thank Yan Sun for providing
technical support in the H, P-NMR characterization
of MEcPP.
Notes and references
1 W. Eisenreich, A. Bacher, D. Arigoni and F. Rohdich, Cell. Mol.
Life Sci., 2004, 61, 1401–1426.
2 N. Qureshi and J. W. Porter, in Biosynthesis of
Isoprenoid Compounds, ed. J. W. Porter and S. L. Spurgeon, Wiley,
New York, 1981, vol. 1, pp. 47–94.
3 U. Flores-Perez, J. Perez-Gil, A. Rodriguez-Villalon, M. Gil,
P. Vera and M. Rodriguez-Concepcion, Biochem. Biophys. Res.
Commun., 2008, 371, 510–514.
4 F. Rohdich, K. Kis, A. Bacher and W. Eisenreich, Curr. Opin.
Chem. Biol., 2001, 5, 535–540.
5 D. Ostrovsky, A. Shashkov and A. Sviridov, Biochem. J., 1993,
295, 901–902.
6 D. Ostrovsky, G. Diomina, E. Lysak, E. Matveeva, O. Ogrel and
S. Trutko, Arch. Microbiol., 1998, 171, 69–72.
7 D. Ostrovsky, I. Shipanova, L. Sibeldina, A. Shashkov,
E. Kharatian, I. Malyarova and G. Tantsyrev, FEBS Lett., 1992,
298, 159–161.
8 N. Campos, M. Rodriguez-Concepcion, M. Seemann, M. Rohmer
and A. Boronat, FEBS Lett., 2001, 488, 170–173.
9 J. Querol, N. Campos, S. Imperial, A. Boronat and M.
Rodriguez-Concepcion, FEBS Lett., 2002, 514, 343–346.
10 K. Okada and T. Hase, J. Biol. Chem., 2005, 280, 20672–20679.
11 D. Adedeji, H. Hernandez, J. Wiesner, U. Kohler, H. Jomaa and
E. C. Duin, FEBS Lett., 2007, 581, 279–283.
12 S. Hecht, W. Eisenreich, P. Adam, S. Amslinger, K. Kis,
A. Bacher, D. Arigoni and F. Rohdich, Proc. Natl. Acad. Sci.
U. S. A., 2001, 98, 14837–14842.
13 Y. Xiao, G. Zahariou, Y. Sanakis and Y. Liu, Biochemistry, 2009,
48, 10483–10485.
14 M. Seemann, B. T. S. Bui, M. Wolff, D. Tritsch, N. Campos,
A. Boronat, A. Marquet and M. Rohmer, Angew. Chem., Int. Ed.,
2002, 41, 4337–4339.
15 F. Rohdich, F. Zepeck, P. Adam, S. Hecht, J. Kaiser, R. Laupitz,
T. Grawert, S. Amslinger, W. Eisenreich, A. Bacher and
D. Arigoni, Proc. Natl. Acad. Sci. U. S. A., 2003, 100,
1586–1591.
16 M. Wolff, M. Seemann, C. Grosdemange-Billiard, D. Tritsch,
N. Campos, M. Rodriguez-Concepcion, A. Boronat and
M. Rohmer, Tetrahedron Lett., 2002, 43, 2555–2559.
17 X. M. He and H. W. Liu, Annu. Rev. Biochem., 2002, 71,
701–754.
18 A. K. Kollas, E. C. Duin, M. Eberl, B. Altincicek, M. Hintz,
A. Reichenberg, D. Henschker, A. Henne, I. Steinbrecher,
D. N. Ostrovsky, R. Hedderich, E. Beck, H. Jomaa and
J. Wiesner, FEBS Lett., 2002, 532, 432–436.
19 T. Itoh, T. Nagano, M. Sato and M. Hirobe, Tetrahedron Lett.,
1989, 30, 6387–6388.
Scheme 3 IspG-catalyzed reactions. (A) IspG-catalyzed reductive
deoxygenation of MEcPP and Epoxy-HMBPP; (B) IspG-catalyzed
MEcPP formation.
taken into consideration, the production of MEcPP from
Epoxy-HMBPP implies that the inter-conversion to MEcPP
from Epoxy-HMBPP might be chemically feasible. However,
the steady-state kinetic analyses presented here are not
sufficient to support the intermediacy of either MEcPP or
Epoxy-HMBPP in IspG-catalyzed reductive deoxygenation
reactions. Pre-steady state analysis in the future will shed light
on the putative intermediacy of Epoxy-HMBPP in this
reaction.
In our studies, we did not detect Epoxy-HMBPP formation
from MEcPP. However, MEcPP is indeed produced from
Epoxy-HMBPP, albeit at a steady state rate that is an order
of magnitude lower than the kcats of reductive deoxygenation
of both MEcPP and Epoxy-HMBPP. One way to interpret
these results is that the slow steady state kcat does not support
an epoxide intermediate as suggested in the epoxide model
(Scheme 1). If that is the case, the reductive deoxygenation of
MEcPP and Epoxy-HMBPP might be achieved through
parallel pathways. Alternatively, it is possible that MEcPP is
a transient, and/or tight binding intermediate during catalysis;
it may not be released into solution at all or may dissociate
from IspG active site at a very slow rate. Similar scenarios
have been suggested in IspC catalysis, an early step of the
DXP pathway,23,24 and in acetohydroxy acid isomeroreductase
catalysis in the biosynthesis of branched-chain amino acids.25
The IspC-catalyzed reduction–isomerization reaction is
believed to proceed via a transient aldehyde intermediate.
However, the aldehyde intermediate has, to date, not been
directly observed.
While this manuscript was in preparation, following our
initial report on Epoxy-HMBPP studies,20 a report by Oldfield
and co-workers suggested that a common organo-metallic
transient species en route to HMBPP was generated from
both MEcPP and Epoxy-HMBPP based on EPR studies.21
Observation of the same downstream intermediate from
MEcPP and Epoxy-HMBPP could support a mechanism
where MEcPP proceeds through Epoxy-HMBPP en route to
HMBPP. However, as Epoxy-HMBPP has not been directly
observed, it is still possible that MEcPP and Epoxy-HMBPP
could produce a common downstream intermediate via
parallel pathways.
20 R. L. Nyland II, Y. Xiao, P. Liu and C. L. F. Meyers, J. Am.
Chem. Soc., 2009, 131, 17734–17735.
21 W. Wang, J. Li, K. Wang, C. Huang, Y. Zhang and E. Oldfield,
Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 11189–11193.
22 A. Majumdar, M. Shah, J. K. Bitok, M. Hassis-LeBeau and
C. L. F. Meyers, Mol. BioSyst., 2009, 5, 935–944.
23 A. T. Koppisch, D. T. Fox, B. S. Blagg and C. D. Poulter,
Biochemistry, 2002, 41, 236–243.
24 J. F. Hoeffler, D. Tritsch, C. Grosdemange-Billiard and
M. Rohmer, Eur. J. Biochem., 2002, 269, 4446–4457.
25 R. Dumas, V. Biou, F. Halgand, R. Douce and R. G. Duggleby,
Acc. Chem. Res., 2001, 34, 399–408.
c
7222 Chem. Commun., 2010, 46, 7220–7222
This journal is The Royal Society of Chemistry 2010