A. G. Sykes, in Sulfur Coordinated Transition Metal Complexes,
The Re-containing cube Mo3ReS45ϩ has been synthesised for
the first time, and likewise exhibits substitution and redox inert
properties. On treating the parent compound [Mo3Re-
(CO)3S4(H2O)9]5ϩ with 1 M NCSϪ, the latter coordinates to the
Mo’s, but whether it displaces the 3CO’s was at first uncertain.
However, elemental analyses on the product indicate a formula
(Me2NH2)4[Mo3Re(CO)3(NCS)9] with the CO’s retained. The
X-ray structure is shown in Fig. 4.
ACS Symp. Ser. No. 653, ed. K. Matsumoto and E. I. Stiefel,
American Chemical Society, Washington D.C., 1996, pp. 216–224.
2 T. Shibahara, Adv. Inorg. Chem., 1991, 37, 143.
3 T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabayashi, F. Nakano,
T. Tanase, S. Yano, M. Hidai, I. Echizen, H. Namikawa and
S. Motomura, J. Am. Chem. Soc., 1994, 116, 3389.
4 T. Shibahara, G. Sakane, M. Maeyama, H. Kobashi, T. Yamamoto
and T. Watase, Inorg. Chim. Acta, 1996, 251, 207.
5 T. Shibahara, H. Akashi, M. Yamasaki and K. Hashimoto, Chem.
Lett., 1991, 689.
The stability of Group 10 (Ni, Pd, Pt) cubes with tetrahedral
MЈ sites, and of Group 9 octahedral RhIII can be explained by
the electron counts of 60 which are exactly as required to fill all
the bonding orbitals. In the case of the odd electron clusters
6 T. Shibahara, H. Akashi and H. Kuroya, J. Am. Chem. Soc., 1988,
110, 3313.
7 D. Masai, Y. Ishii and M. Hidai, 48th Japanese Conference on
Coordination Chemistry, Kochi, Japan, 1998, abstract 3A306.
8 (a) H. Akashi and T. Shibahara, Abstracts to the 30th ICCC, Kyoto,
Japan, 1994, p. 175; (b) H. Akashi, A. Nakano and T. Shibahara,
XVIIth IUCr Congress, Glasgow, UK, 1999, abstract P07.07.041.
9 M. Martinez, B.-L. Ooi and A. G. Sykes, J. Am. Chem. Soc., 1987,
109, 4615.
10 M. N. Sokolov, N. Coichev, H. D. Moya, R. Hernandez-Molina,
C. D. Borman and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1997,
1863.
4ϩ
4ϩ
Mo3CuS4
(61e) and Mo3CoS4
(59e), both are highly
reactive, and dimerisation with formation of MЈ–MЈ bonds
occurs.5,6 The Cuϩ adduct Mo3CuS4 (60e) has also been pre-
5ϩ
pared,30,31 but here the Cuϩ is less likely to form MЈ–MЈ bonds.
5ϩ
A stable cube structure Mo3ReS4 (60e) incorporating an
octahedral ReI is therefore perfectly reasonable.
In spite of the reluctance of [W3S4(H2O)9]4ϩ to form hetero-
metallic derivatives, it is possible with Pt and Rh to prepare
analogues of those from [Mo3S4(H2O)9]4ϩ using the same
procedures. From studies carried out similar structures are
indicated. With the inclusion of Pt and Rh eight derivatives of
[W3S4(H2O)9]4ϩ are now known to form (Mo, Rh, Ni, Pt, Cu,
In, Ge, Sn). The greater reluctance of [W3S4(H2O)9]4ϩ to form
heterometal adducts has already been discussed.32
11 V. P. Fedin, M. N. Sokolov and A. G. Sykes, J. Chem. Soc., Dalton
Trans., 1996, 44089.
12 R. Colton and J. Knapp, Aust. J. Chem., 1971, 9.
13 SMART, Program for X-Ray Diffraction Data Collection, Siemens
Analytical X-Ray Instruments Inc., Madison, WI, 1998.
14 SAINT, Program for Area Detector Absorption Correction,
Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994.
15 G. M. Sheldrick, SHELXTL, Program for Crystal Structure
Determination, Siemens Analytical X-Ray Instruments Inc.,
Madison, WI, 1994.
16 D. M. Saysell, G. J. Lamprecht, J. Darkwa and A. G. Sykes, Inorg.
Chem., 1996, 35, 5531.
17 D. M. Saysell, C. D. Borman, C.-H. Kwak and A. G. Sykes, Inorg.
Chem., 1996, 35, 173.
18 See e.g.: Analytical Chemistry of the Elements – Platinum Metals,
J. Wiley & Sons, New York, 1975, p. 339.
19 G. A. Rempel, P. Legzdins, H. Smith and G. Wilkinson, Inorg.
Synth., 1972, 13, 90.
20 V. P. Fedin, Y. Mironov and V. Fedorov, Zh. Neorg. Khim, 1989, 34,
2984.
21 G. W. Watt and R. J. Thompson, Inorg. Synth., 1963, 7, 189.
22 F. A. Cotton, N. F. Curtis, B. F. G. Johnson and W. R. Robinson,
Inorg. Chem., 1965, 4, 326.
23 I. J. McLean, R. Hernandez-Molina, M. N. Sokolov, M.-S. Seo,
A. V. Virovets, M. R. J. Elsegood, W. Clegg and A. G. Sykes,
J. Chem. Soc., Dalton Trans., 1998, 2557.
24 V. P. Fedin, M.-S. Seo, D. M. Saysell, D. N. Dybtsev, M. R. J.
Elsegood, W. Clegg and A. G. Sykes, to be published.
25 R. Hernandez-Molina and A. G. Sykes, Coord. Chem. Rev., 1999,
187, 291.
26 S. F. Lincoln and A. E. Merbach, Adv. Inorg. Chem., 1995, 42, 3.
27 G. Laurenczy, I. Rapaport, D. Zbinden and A. E. Merbach, Magn.
Reson. Chem., 1991, 29, 545.
28 C. A. Routledge, M. Humanes, Y.-J. Li and A. G. Sykes, J. Chem.
Soc., Dalton Trans., 1994, 1275.
In conclusion, derivatives of [Mo3S4(H2O)9]4ϩ have been
prepared by addition of Pt0 (d10), RhIII (d6) and ReI (d6) to give
the edge-linked double cube [{Mo3PtS4(H2O)9}2]8ϩ, and double
cubes [Mo3RhS4(H2O)12]7ϩ and [Mo3(Re(CO)3)S4(H2O)9]5ϩ. In
the case of the Pt and Rh derivatives the formulae are consist-
ent with previous studies, with the important difference that
aqua ligands are present. The tendency of the Pt double cube to
reform the single cube with different ligands, e.g. CO, is much
less than in the case of the Pd analogue. The studies described
indicate substitution and redox inert properties in all three
cases. Whereas the Pt0 assignment is consistent with existing
Group 10 Ni0 and Pd0 studies, the RhIII (d6) oxidation state with
7ϩ
high overall charge of Mo3RhS4 is a novel feature. In the Re
5ϩ
case, an Mo3ReS4 structure, and ReI (d6) state provide the
most reasonable assignment. In all three cases, it is possible to
recover [Mo3S4(H2O)9]4ϩ by heating, which is consistent with
representations Mo3S44ϩ,Pt0; Mo3S44ϩ,RhIII and Mo3S44ϩ,ReI.10
Acknowledgements
We are grateful for financial support from the British Council
(A. M. El-H.), the European Union Alpha Programme (D. V.),
and the University of Newcastle (M. N. S.). Thanks are also
due to the EPSRC for equipment funding (W. C.).
29 F. Basolo, Polyhedron, 1990, 9, 1503.
30 M. Nasreldin, Y.-J. Li, F. E. Mabbs and A. G. Sykes, Inorg. Chem.,
1994, 33, 4283.
31 H. Akashi and T. Shibahara, Inorg. Chim. Acta, 2000, 572, 300.
32 R. Hernandez-Molina, M. R. J. Elsegood, W. Clegg and A. G. Sykes,
J. Chem. Soc., Dalton Trans., 2001, 2173.
References
1 (a) R. Hernandez-Molina, M. N. Sokolov and A. G. Sykes, Acc.
Chem. Res., 2001, 34, 223; (b) D. M. Saysell, M. N. Sokolov and
J. Chem. Soc., Dalton Trans., 2001, 2611–2615
2615