Notes and references
z Crystallographic data of 6: C57H62Cl2N16O16, M = 1298.13, mono-
clinic, P21/c, a = 15.195(6) A, b = 25.537(9) A, c = 17.451(7) A,
a = 90.001, b = 114.634(4)1, g = 90.001, V = 6155(4) A3, Z = 4,
m(Mo-Ka) = 0.71073 mmꢀ1, T = 173(2) K. The structure was solved
and refined by SHELXL-97 in the WinGX package. Final residuals
(871 parameters) R1 = 0.1380 for 9377 reflections with I > 2s (I), and
R1 = 0.1588, wR2 = 0.2746. GoF = 1.353 for all 11 127 data. CCDC
816915.
Fig. 2 Structure of 7.
with Zn2+, however, addition of anions into the solution of
[7ꢂZn]2+ complex did not generate a similar red-shifted emission
band as that observed for 5 (Fig. S10, ESIw). We also carefully
1
recorded H NMR spectra of 5 with the addition of zinc ion
1 For a very recent overview of ion pair receptors, see: S. K. Kim and
J. L. Sessler, Chem. Soc. Rev., 2010, 39, 3784 and references cited
therein.
followed by the addition of Clꢀ. As illustrated in Fig. 3,
interaction of 5 with one equivalent of Zn2+ produced
complex [5ꢂZn]2+ almost quantitatively. Addition of Clꢀ up
to one equivalent did not affect the 1H NMR spectrum of
complex [5ꢂZn]2+. These results indicated clearly that the
fluorescence enhancement upon the addition of anions such
as halides and nitrate to the complex [5ꢂZn]2+ (Fig. 1) is due to
the interaction of anions with the electron-deficient triazine
ring such as [anion–5–Zn]+ rather than the interaction
between anions and zinc ion [5–Zn–anion]+.
2 (a) S. S. Flack, J.-L. Charmette, J. D. Kilburn, G. J. Langley and
M. Webster, J. Chem. Soc., Chem. Commun., 1993, 399;
(b) J. M. Mahoney, A. M. Beatty and B. D. Smith, J. Am. Chem.
Soc., 2001, 123, 5847; (c) Y.-H. Kim and J.-I. Hong, Chem.
Commun., 2002, 512; (d) D. M. Rudkevich, J. D. Mercer-Chalmers,
W. Verboom, R. Ungaro, F. de Jong and D. N. Reinhoudt, J. Am.
Chem. Soc., 1995, 117, 6124; (e) H. Liu, X.-B. Shao, M.-X. Jia,
X.-K. Jiang, Z.-T. Li and G.-J. Chen, Tetrahedron, 2005, 61, 8095;
(f) M. Kemmer, M. Biesemans, M. Gielen, J. C. Martins,
V. Gramlich and R. Willem, Chem.–Eur. J., 2001, 7, 21.
3 (a) D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, J. Org.
Chem., 1994, 59, 3683; (b) J. Scheerder, J. P. M. van Duynhoven,
J. F. J. Engbersen and D. N. Reinhoudt, Angew. Chem., Int. Ed.
Engl., 1996, 35, 1090; (c) T. Nabeshima, T. Saiki, J. Iwabuchi and
S. Akine, J. Am. Chem. Soc., 2005, 127, 5507.
4 (a) R. Custelcean, L. H. Delmau, B. A. Moyer, J. L. Sessler,
W.-S. Cho, D. Gross, G. W. Bates, S. J. Brooks, M. E. Light and
P. A. Gale, Angew. Chem., Int. Ed., 2005, 44, 2537; (b) M. Cametti,
M. Nissinen, A. Della Cort, L. Mandolini and K. Rissanen, Chem.
Commun., 2003, 2420.
5 J. L. Sessler, S. K. Kim, D. E. Gross, C.-H. Lee, J. S. Kim and
V. M. Lynch, J. Am. Chem. Soc., 2008, 130, 13162.
6 M. T. Reetz, C. M. Miemeyer and K. Harms, Angew. Chem., Int.
Ed. Engl., 1991, 30, 1472.
It should be noted that addition of more than one equi-
valent of anions led to the dissociation of ion pair complex
[anion–5–Zn]+, this has been evidenced by the observation of
the quench of fluorescence of the complex from fluorescence
titration (Fig. S11–S14, ESIw) and the generation of free
oxacalix[2]arene[2]triazine azacrown host 5 from 1H NMR
titration. Fig. 4 is a schematic illustration of interactions of
ditopic receptor 5 with Zn2+ and anion species.
In summary, we have provided a very efficient and expedient
synthesis of oxacalix[2]arene[2]triazine azacrowns 5 and 6.
Bearing an azacrown moiety and an electron-deficient
V-shaped cleft formed by two triazine rings, compounds 5
and 6 acted as ditopic receptors to interact with ion pairs. We
have thus demonstrated for the first time that the anion–p
interaction motif can be used in the design of receptors for ion
pair recognition.
7 A. Mele, P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati,
J. Am. Chem. Soc., 2005, 127, 14972.
8 For recent reviews on anion–p interaction, see: (a) D. Quinonero,
P. M. Deya, M. P. Carranza, A. M. Rodriguez, F. A. Jalon and
B. R. Manzano, Dalton Trans., 2010, 39, 794; (b) P. Gamez,
T. J. Mooibroek, S. J. Teat and J. Reedijk, Acc. Chem. Res., 2007,
40, 435; (c) B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem.
Soc. Rev., 2007, 37, 68; (d) B. P. Hay and V. S. Bryantsev, Chem.
Commun., 2008, 2417; (e) P. Ballester, in Recognition of Anions,
ed. R. Vilar, Springer-Verlag, Berlin Heidelberg, 2008, p. 127.
9 (a) M. Mascal, A. Armstrong and M. D. Bartberger, J. Am. Chem.
Soc., 2002, 124, 6274; (b) D. Quinonero, C. Garar, C. Rotger,
A. Frontera, P. Ballester, A. Costa and P. M. Deya, Angew. Chem.,
Int. Ed., 2002, 41, 3389; (c) I. Alkorta, I. Rozas and J. Elguero, J. Am.
Chem. Soc., 2002, 124, 8593; (d) O. B. Berryman, V. S. Bryantsev, D. P.
Stay, D. W. Johnson and B. P. Hay, J. Am. Chem. Soc., 2007, 129, 48.
10 (a) Y. S. Rosokha, S. V. Lindeman, S. V. Rosokha and
J. K. Kochi, Angew. Chem., Int. Ed., 2004, 43, 4650; (b) D.-X.
Wang, Q.-Y. Zheng, Q.-Q. Wang and M.-X. Wang, Angew. Chem.,
Int. Ed., 2008, 47, 7485; (c) H. T. Chifotides, B. L. Schottel and
K. R. Dunbar, Angew. Chem., Int. Ed., 2010, 49, 7202; (d) R. E.
Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar,
J. Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda,
C. A. Schalley and S. Matile, Nat. Chem., 2010, 2, 533;
(e) D.-X. Wang, Q.-Q. Wang, Y. Han, Y. Wang, Z.-T. Huang
and M.-X. Wang, Chem.–Eur. J., 2010, 16, 13053; (f) S. Guha and
S. Saha, J. Am. Chem. Soc., 2010, 132, 17674.
We thank NNSFC (20875094, 21072197, 20972161), MOST
(2011CB932501, 2007CB808005) and CAS for financial support.
Fig. 3 Left: 1H NMR titrations of 5 upon the addition of Zn(ClO4)2.
Right: 1H NMR titrations of [5ꢂZn2+](ClO4)2 upon the addition of
tetrabutylammonium chloride.
11 J. L. Katz, B. J. Geller and R. R. Conry, Org. Lett., 2006, 8, 2755.
12 (a) M.-X. Wang and H.-B. Yang, J. Am. Chem. Soc., 2004,
126, 15412. For other examples of 1,3-alternate conformations of
heteracalixaromatics, see:; (b) M.-X. Wang, Chem. Commun., 2008,
4541; (c) W. Maes and W. Dehaen, Chem. Soc. Rev.,
2008, 37, 2393; (d) H. Tsue, K. Ishibashi and R. Tamura, Top.
Heterocycl. Chem., 2008, 17, 73.
13 (a) P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43,
1739; (b) Hyperquad2003 software, Protonic Software, http://
Fig. 4 Illustration of interactions of 5 with Zn2+ and anion species.
8114 Chem. Commun., 2011, 47, 8112–8114
c
This journal is The Royal Society of Chemistry 2011