Communication
ChemComm
and XeÁÁÁcentroid(arene) distances measuring 3.77(3) Å.23 The
xenon thermal parameters (at 100 K) are also noticeably larger for
the Xe@111 complex than for Xe@Br3-111. Similarly, the xenon
atoms of the Xe@222 complex is even less crowded, exhibiting
longer XeÁ Á ÁC(arene) contacts and a packing coefficient of 0.47.
Interestingly, single crystals of 0.96Xe@Br3-111 appear to be
indefinitely stable under ambient conditions; over a period of
months, no loss of xenon can be detected by X-ray diffraction,
despite the otherwise volatile nature of the guest. We note that
gas-encapsulating molecules such as these may have materials
applications related to gas confinement or separations.24
Crystals of 0.92Xe@(MeO)3-111Á1.5DCE are similarly iso-
structural to the empty crystal form (MeO)3-111Á1.5DCE, except that
the (65 : 35) conformational disorder of the cryptophane observed in
the empty structure is not present in 0.92Xe@(MeO)3-111Á1.5DCE.
Only the more open of the two conformers is observed (Fig. S14 and
S20, ESI†), yet, like Xe@Br3-111, the xenon is centered and highly
crowded within an intermediate cryptophane-111 core conforma-
tion (PC = 0.79, Vc = 53 Å3). Similarly also, close XeÁÁÁC(arene)
intermolecular contacts are observed for the Xe@(MeO)3-111
complex, ranging from 3.64–4.35 Å (avg. = 3.91(19) Å) and exhibiting
XeÁÁÁcentroid(arene) distances averaging 3.65(14) Å.
4 (a) M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E.
Wemmer, A. Pines, S. Q. Yao, F. Tian and P. G. Schultz, Proc. Natl.
Acad. Sci. U. S. A., 2001, 98, 10654–10657; (b) L. Schroder, T. J.
Lowery, C. Hilty, D. E. Wemmer and A. Pines, Science, 2006, 314,
446–449.
5 (a) Y. Bai, P. A. Hill and I. J. Dmochowski, Anal. Chem., 2012, 84,
9935–9941; (b) K. K. Palaniappan, R. M. Ramirez, V. S. Bajaj,
D. E. Wemmer, A. Pines and M. B. Francis, Angew. Chem., Int. Ed.,
2013, 52, 4849–4853.
6 (a) K. K. Palaniappan, M. B. Francis, A. Pines and D. E. Wemmer,
¨
Isr. J. Chem., 2014, 54, 104–112; (b) L. Schroder, Physica Medica,
2013, 29, 3–16; (c) O. Taratula and I. J. Dmochowski, Curr. Opin.
Chem. Biol., 2010, 14, 97–104; (d) P. Berthault, G. Huber and
H. Desvaux, Prog. Nucl. Magn. Reson. Spectrosc., 2009, 55, 35–60.
7 (a) D. Cavagnat, T. Brotin, J.-L. Bruneel, J.-P. Dutasta, A. Thozet,
M. Perrin and F. Guillaume, J. Phys. Chem. B, 2004, 108, 5572–5581;
(b) O. Taratula, P. A. Hill, N. S. Khan, P. J. Carroll and I. J. Dmochowski,
Nat. Commun., 2010, 1, 148–154.
´
8 (a) D. R. Jacobson, N. S. Khana, R. Colle, R. Fitzgerald, L. Laureano-
´
Perez, Y. Baia and I. J. Dmochowski, Proc. Natl. Acad. Sci. U. S. A.,
´
2011, 108, 10969–10973; (b) L. Delacour, N. Kotera, T. Traore,
S. Garcia-Argote, C. Puente, F. Leteurtre, E. Gravel, N. Tassali,
´
C. Boutin, E. Leonce, Y. Boulard, P. Berthault and B. Rousseau,
Chem. – Eur. J., 2013, 19, 6089–6093.
9 K. Bartik, M. Luhmer, J.-P. Dutasta, A. Collet and J. Reisse, J. Am.
Chem. Soc., 1998, 120, 784–791.
10 (a) H. A. Fogarty, P. Berthault, T. Brotin, G. Huber, H. Desvaux and
J. P. Dutasta, J. Am. Chem. Soc., 2007, 129, 10332–10333; (b) K. E.
Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson and J.-P. Dutasta,
J. Phys. Chem. A, 2009, 113, 13675–13684.
The first rim-functionalized derivatives of cryptophane-111
were synthesized by a heterocapping synthetic approach. As
observed by crystallography and 1H and 129Xe NMR spectro-
scopy, (MeO)3-111 and Br3-111 bind xenon in organic solvents,
albeit more weakly than expected. The crystallographically
characterized xenon complexes exhibit the shortest known
XeÁ Á ÁC intermolecular contacts. At this time, we do not have a
definitive explanation for the crowded xenon complexes. It is
possible that crystal packing forces dictate that the complexes
maintain somewhat contracted conformations. It is more
likely, however, that the rim-positioned functional groups
may prevent the cryptophanes from adopting the synperiplanar
ArOCH2 conformations (t) characteristic of the most expanded
111 core conformation. Rim-functionalization thus appears to
significantly limit the range of achievable conformations of the
111 core and suggests that such 111 derivatives may be better
hosts than 111 for smaller gases such as N2, O2, etc.
11 S. T. Mough, J. C. Goeltz and K. T. Holman, Angew. Chem., Int. Ed.,
2004, 43, 5631–5635.
12 R. M. Fairchild, A. I. Joseph, K. T. Holman, H. A. Fogarty, T. Brotin,
J.-P. Dutasta, C. Boutin, G. Huber and P. Berthault, J. Am. Chem. Soc.,
2010, 132, 15505–15507.
13 (a) E. Dubost, J.-P. Dognon, B. Rousseau, G. Milanole, C. Dugave,
´
Y. Boulard, E. Leonce, C. Boutin and P. Berthault, Angew. Chem., Int.
Ed., 2014, 53, 9837–9840; (b) E. Dubost, N. Kotera, S. Garcia-Argote,
´
Y. Boulard, E. Leonce, C. Boutin, P. Berthault, C. Dugave and
´
´
B. Rousseau, Org. Lett., 2013, 15, 2866–2868; (c) T. Traore, G. Clave,
L. Delacour, N. Kotera, P.-Y. Renard, A. Romieu, P. Berthault,
C. Boutin, N. Tassali and B. Rousseau, Chem. Commun., 2011, 47,
9702–9704.
´
14 T. Traore, L. Delacour, S. Garcia-Argote, P. Berthault, J.-C. Cintrat
and B. Rousseau, Org. Lett., 2010, 12, 960–962.
´
15 (a) T. Traore, L. Delacour, N. Kotera, G. Merer, D.-A. Buisson,
C. Dupont and B. Rousseau, Org. Process Res. Dev., 2011, 15,
435–437; (b) M. A. Little, J. Donkin, J. Fisher, M. A. Halcrow,
J. Loder and M. J. Hardie, Angew. Chem., Int. Ed., 2012, 51, 764–766.
16 M. A. Little, M. A. Halcrow and M. J. Hardie, Chem. Commun., 2013,
49, 1512–1514.
17 (a) D. J. Cram, M. E. Tanner, S. J. Keipert and C. B. Knobler, J. Am.
Chem. Soc., 1991, 113, 8909–8916; (b) J. Canceill and A. Collet, New
J. Chem., 1986, 10, 17–23.
18 A. Speicher, T. Backes and S. Grosse, Tetrahedron, 2005, 61, 11692–11696.
19 Y. Miyahara, K. Abe and T. Inazu, Angew. Chem., Int. Ed., 2002, 41,
3020–3023.
20 T. Brupbacher, J. Makarewicz and A. Bauder, J. Chem. Phys., 1994,
101, 9736–9746.
This work was partially supported by Georgetown University, the
U.S. National Science Foundation (NSF; DMR-1106266, CHE-
1337975), and the IMI Program under DMR-0843934. Support from
the French Ministry of Research (project ANR-12-BSV5-0003) and
´
from the Foundation pour la Recherche Medicale (project
DCM20111223065) is acknowledged. We thank John C. Sherman
21 S. Mecozzi and J. J. Rebek, Chem. – Eur. J., 1998, 4, 1016–1022.
for helpful discussions regarding 1b/2b. We thank Leonard 22 Though the CDCl3@222 complex was originally estimated (a) to
have a PC of 0.89, our analysis of the crystal structures of the
complex (b) reveal that the value is closer to 0.61. (a) G. Laurent,
D. Jean-Pierre and A. Collet, Angew. Chem., Int. Ed. Engl., 1993, 32,
J. Barbour for assisting with the cavity volume calculations and
providing the apparatus for crystal growth under pressurized xenon.
1169–1171; (b) D. Cavagnat, T. Brotin, J.-L. Bruneel, J.-P. Dutasta,
A. Thzoet, M. Perrin and F. Guillaume, J. Phys. Chem. B, 2004, 108,
5572–5581.
Notes and references
1 T. Brotin and J. P. Dutasta, Chem. Rev., 2009, 109, 88–130.
2 T. Brotin, S. Goncalves, P. Berthault, D. Cavagnat and T. Buffeteau,
J. Phys. Chem. B, 2013, 117, 12593–12601.
23 A. I. Joseph, S. H. Lapidus, C. M. Kane and K. T. Holman, Angew.
Chem., Int. Ed., 2014, accepted.
24 L. Chen, P. S. Reiss and S. Y. Chong, et al., Nat. Mater., 2014, 13,
954–960.
3 R. M. Fairchild and K. T. Holman, J. Am. Chem. Soc., 2005, 127, 16364–16365.
15908 | Chem. Commun., 2014, 50, 15905--15908
This journal is ©The Royal Society of Chemistry 2014