without apparently changing the charge carrier mobility. Such
effect indicates that light functions as an additional parameter
to control the number of mobile charges. As shown in Fig. 2(d),
upon irradiation with violet light (l = 408 nm) of 3.9 mW cmꢀ2
the threshold voltage shifts from ꢀ29 V to ꢀ9 V. A ratio of
photo-current and dark-current (Iph/Idark) as high as 4 ꢂ 103 is
measured from the transfer curves shown in Fig. 2(c). In
contrast, transistors of 1a do not show response to orange
and red light. Such photo effect can be attributed to charges
generated by dissociation of photo-induced excitons.8,9 The
relatively large threshold voltage (ꢀ29 V) suggests high density
of charge carrier traps in the transistor.17 Photo irradiation
shifts the threshold voltage to less negative values because some
of the traps are filled with the photo-induced charges.
6 S. Toyota, M. Goichi and M. Kotani, Angew. Chem., Int. Ed.,
2004, 43, 2248–2251.
7 (a) J. E. Anthony, Chem. Rev., 2006, 106, 5028–5048; (b) K. Ito, T.
Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato and S. Tokito,
Angew. Chem., Int. Ed., 2003, 42, 1159; (c) H. Meng, F. Sun, M. B.
Goldfinger, F. Gao, D. J. Londono, W. J. Marshal, G. S.
Blackman, K. D. Dobbs and D. E. Keys, J. Am. Chem. Soc.,
2006, 128, 9304–9305; (d) H. Meng, F. Sun, M. B. Goldfinger, G.
D. Jaycox, Z. Li, W. J. Marshal and G. S. Blackman, J. Am. Chem.
Soc., 2005, 127, 2406–2407; (e) S. Ando, J. I. Nishida, E. Fujiwara,
H. Tada, Y. Inoue, S. Tokito and Y. Yamashita, Chem. Mater.,
2005, 17, 1261; (f) J. A. Merlo, C. R. Newman, C. P. Gerlach, T.
W. Kelley, D. V. Muyres, S. E. Fritz, M. F. Toney and C. D.
Frisbie, J. Am. Chem. Soc., 2005, 127, 3997; (g) Z. Wang, C. Kim,
A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2007, 129,
13362–13363; (h) A. Dell’Aquila, F. Marinelli, J. Tey, P. Keg, Y.-
M. Lam, O. L. Kapitanchuk, P. Mastrorilli, C. F. Nobile, P.
Cosma, A. Marchenko, D. Fichou, S. G. Mhaisalkar, G. P.
Suranna and L. Torsi, J. Mater. Chem., 2008, 18, 786–791.
8 Organic phototransistors showing response to UV light: (a) Y.-Y.
Noh, D.-Y. Kim, Y. Yoshida, Y. Yase, B. J. Jung, E. Lim and H.
K. Shim, Appl. Phys. Lett., 2005, 86, 043501; (b) T. P. I. Saragi, R.
Pudzich, T. Fuhrmann and J. Salbeck, Appl. Phys. Lett., 2004, 84,
2334–2336; (c) Y.-Y. Noh, J. Ghim, S.-J. Kang, K.-J. Baeg, D.-Y.
Kim and K. Yase, J. Appl. Phys., 2006, 100, 094501.
In summary, the studies above demonstrate that the thin
films of macrocycle 1a function as phototransistors combining
light detection and signal magnification in a single device. The
photo response suggests potential applications of this family of
conjugated macrocycle molecules in organic optoelectronics,
such as photodetectors and solar cells. The success of using
conjugated macrocycle molecules as organic semiconductors in
OFETs19 also suggests a new strategy to design electronic
materials for OFET-based chemical sensors since the intrinsic
cavity from a macrocyclic structure may selectively bind a guest
molecule. For such application, the cavity inside the conjugated
macrocycle should be enlarged to accommodate a guest mole-
cule. Investigations on conjugated macrocycles with larger
cavities are in progress in our laboratory.
9 Organic phototransistors showing response to visible light:
(a) Y.-Y. Noh, D.-Y. Kim and K. Yase, J. Appl. Phys., 2005, 98,
074505; (b) R. M. Meixner, H. Gobel, F. A. Yildirim, W. Bauhofer
¨
and W. Krautschneider, Appl. Phys. Lett., 2006, 89, 092110;
(c) M. Mas-Torrent, P. Hadley, N. Crivillers, J. Veciana and C.
Rovira, ChemPhysChem, 2006, 7, 86–88; (d) Q. Tang, L. Li, Y.
Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu and D. Zhu, Adv.
Mater., 2007, 19, 2624–2628; (e) Y. Hu, G. Dong, C. Liu, L. Wang
and Y. Qiu, Appl. Phys. Lett., 2006, 89, 072108.
10 (a) S. Akiyama, S. Misumi and M. Nakagawa, Bull. Chem. Soc.
Jpn., 1960, 1293–1298; (b) S. Akiyama and M. Nakagawa, Chem.
Ind., 1960, 346–347.
11 H. E. Katz, J. Org. Chem., 1989, 54, 2179–2183.
12 F. Diederich and H. Staab, Angew. Chem., Int. Ed. Engl., 1978, 17,
372–374.
This work is financially supported by the Chinese University
of Hong Kong. The authors would like to thank Prof. Jimmy
C. Yu, Prof. Jianfang Wang (the Chinese University of Hong
Kong) and Prof. Feng Yan (the Hong Kong Polytechnic
University) for help on thin film and device characterization.
We thank Dr A. L. Briseno (University of Washington) for
helpful discussion.
13 S. Akiyama, K. Nakashima, S. Nakatsuji and M. Nakagawa, Dyes
Pigm., 1990, 13, 117–122.
14 (a) Q. Zhou, P. J. Carroll and T. M. Swager, J. Org. Chem., 1994,
59, 1294–1301; (b) U. H. F. Bunz and V. Enkelmann, Chem.–Eur.
J., 1999, 5, 263–266; (c) T. Nishinaga, Y. Miyata, N. Nodera and
K. Komatsu, Tetrahedron, 2004, 60, 3375–3382; (d) T. Nishinaga,
N. Nodera, Y. Miyata and K. Komatsu, J. Org. Chem., 2002, 67,
6091–6096; (e) M. L. Bell, R. C. Chiechi, C. A. Johnson, D. B.
Kimball, A. J. Matzger, W. B. Wan, T. J. R. Weakley and M. M.
Haley, Tetrahedron, 2001, 57, 3507–3520; (f) J. J. Pak, T. J. R.
Weakley and M. M. Haley, J. Am. Chem. Soc., 1999, 121,
8182–8192.
15 (a) A. Sun, J. W. Lauher and N. S. Goroff, Science, 2006, 312,
1030–1034; (b) G. W. Coates, A. R. Dunn, L. M. Henling, D. A.
Dougherty and R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 1997,
36, 248–251; (c) R. Xu, V. Gramilish and H. Frauenrath, J. Am.
Chem. Soc., 2006, 128, 5541–5547.
Notes and references
z Crystal data for 1b: C48H40O2: M = 648.80, triclinic, space group
ꢀ
P1, a = 8.9279(8), b = 10.0248(9), c = 11.7180(10) A, a = 75.067(2),
b = 67.838(2), g = 69.165(2), V = 894.48(14) A3, Z = 1, 7913
reflections collected, 3059 unique (Rint = 0.0247). The final R was
0.1624 (all data) and wR was 0.3683 (all data).
1 Recent reviews: (a) W. Zhang and J. S. Moore, Angew. Chem., Int.
Ed., 2006, 45, 4416–4439; (b) S. Hoger, Angew. Chem., Int. Ed.,
¨
2005, 44, 3806–3808; (c) S. Hoger, Chem.–Eur. J., 2004, 10, 1320;
16 (a) U. Rohr, P. Schilichting, A. Bohm, M. Gross, K. Meerholz, C.
¨
Brauchle and K. Mullen, Angew. Chem., Int. Ed., 1998, 37,
¨
¨
¨
(d) U. H. F. Bunz, Y. Rubin and Y. Tobe, Chem. Soc. Rev., 1999,
28, 107; (e) M. M. Haley, J. J. Pak and S. C. Brand, Top. Curr.
Chem., 1999, 201, 81–130.
2 D. Venkataraman, S. Lee, J. Zhang and J. S. Moore, Nature, 1994,
371, 591–593.
3 (a) R. Boese, A. J. Matzger and K. P. C. Vollhardt, J. Am. Chem.
Soc., 1997, 119, 2052–2053; (b) P. I. Dosa, C. Erben, V. S. Iyer, K.
P. C. Vollhardt and I. M. Wasser, J. Am. Chem. Soc., 1999, 121,
10430–10431.
4 T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M. Yen,
J. Zhao, J. S. Moore and L. Zang, J. Am. Chem. Soc., 2007, 129,
6978–6979.
1434–1437; (b) Q. Miao, X. Chi, S. Xiao, R. Zeiss, M. Lefenfeld,
C. Kloc, M. L. Steigerwald, T. Siegrist and C. Nuckolls, J. Am.
Chem. Soc., 2006, 128, 1340–1345; (c) S.-H. Lim, T. G. Bjorklund,
F. C. Spano and C. J. Bardeen, Phys. Rev. Lett., 2004, 92, 107402.
17 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 2002,
14, 99–117.
18 The capacitance of OTS-treated 300 nm thick SiO2 was reported to
be 11.3 nF cmꢀ2 and is close to the capacitance of untreated
300 nm thick SiO2. See: Q. Miao, M. Lefenfeld, T.-Q. Nguyen, T.
Siegrist, C. Kloc and C. Nuckolls, Adv. Mater., 2005, 17, 407–412.
19 For examples of organic field effect transistors from conjugated
macrocycle molecules, see: (a) H. Xu, G. Yu, W. Xu, Y. Xu, G.
Cui, D. Zhang, Y. Liu and D. Zhu, Langmuir, 2005, 21, 5391–5395;
(b) T. Zhao, Z. Wei, Y. Song, W. Xu, W. Hu and D. Zhu, J. Mater.
Chem., 2007, 17, 4377–4381.
5 (a) K. P. Baldwin, A. J. Matzger, D. A. Scheiman, C. A. Tesier, K.
P. C. Vollhardt and W. J. Youngs, Synlett, 1995, 000, 1215–1218;
(b) J. J. Pak, T. J. R. Weakley, M. M. Haley, D. Y. K. Lau and J.
F. Stoddart, Synthesis, 2002, 9, 1256–1260.
ꢁc
This journal is The Royal Society of Chemistry 2008
4326 | Chem. Commun., 2008, 4324–4326