10.1002/anie.201812758
Angewandte Chemie International Edition
COMMUNICATION
than [(TMC)FeIV(O)(CH3CN)]2+ (Table S6). The greater reactivity
of 2 is also reflected in the inability of [(TMC)FeIV(O)(CH3CN)]2+ to
perform epoxidation of olefins under catalytic reaction
conditions.[6] The higher reactivity of 2 may arise from kinetic
and/or thermodynamic factors.[13] DFT calculations (see SI for
details)[14] on the two complexes show that the Fe=O core in 2 in
the experimentally determined cis-V configuration is sterically less
hindered than in [(TMC)FeIV(O)(CH3CN)]2+ (Figure S12), which
would make 2 a kinetically better oxidant. Note that for both 2 and
[(TMC)FeIV(O)(CH3CN)]2+, a triplet S = 1 state has been
calculated as the ground state with the excited S = 2 state being
separated by 7.9 kcal/mol and 4.7 kcal/mol, respectively (Table
S7). Thus, a two-state reactivity model[15] cannot account for the
higher reactivity of 2 as the more reactive S = 2 excited state is
placed higher in energy in 2 than in [(TMC)FeIV(O)(CH3CN)]2+.
Interestingly, a KIE value of 1.4 has been determined in the
epoxidation of cyclohexene, when 2-d4 containing four –ND
groups) was employed in the reaction (Figure S13). The presence
of KIE may corroborate the involvement of the cyclam–NH groups
in assuring preferential epoxidation over allylic oxidation reactions
in 2. Notably, [(TMC)FeIV(O)(CH3CN)]2+ and other oxoiron(IV)
complexes, which lack any –NH hydrogens, undergo preferential
allylic oxidation reactions.[1,2] We presume that because of the H-
bonding interaction with the cyclam –NH hydrogens, the oxidizing
FeIV=O core lies in closer proximity to the C=C unit (than the –
CH2- unit) of the C=C-CH2- substrates, thereby leading to stereo-
and regioselective epoxidation reactions mediated by 2. However,
a more detailed mechanistic investigation is needed to fully
understand the preference of the olefin epoxidation over the C-H
bond activation in the oxidation of cyclohexene by 2.
the NRF of Korea through CRI (NRF-2012R1A3A2048842 to WN)
and GRL (NRF-2010-00353 to WN) for financial support. TC
gratefully acknowledges the Alexander von Humboldt Foundation
for a postdoctoral fellowship. XAS experiments were performed at
SSRL beamline 4-1 (SLAC National Accelerator Laboratory,
USA) benefited from support of the US DOE Office of Science
(DE‐AC02‐76SF00515) and the US NIH (P30‐EB‐009998 and
P41‐GM‐103393).
Keywords: Bioinorganic/Biomimetic Chemistry • Nonheme
Oxoiron Intermediate • Stereoselective Epoxidation •
Regioselectivity • Catalysis
[1]
a) X. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491-2553; b) R. A.
Baglia, J. P. T. Zaragoza, D. P. Goldberg, Chem. Rev. 2017, 117, 13320-
13352; c) X. Engelmann, I. Monte-Perez, K. Ray, Angew. Chem. Int. Ed.
2016, 55, 7632-7649; Angew. Chem. 2016, 128, 7760-7778; d) Z. Chen,
G. Yin, Chem. Soc. Rev. 2015, 44, 1083-1100; e) K. Ray, F. Heims, M.
Schwalbe, W. Nam, Curr. Opin. Chem. Biol. 2015, 25, 159-171; f) S. A.
Cook, A. S. Borovik, Acc. Chem. Res. 2015, 48, 2407-2414; g) M. Puri,
L. Que, Jr., Acc. Chem. Res. 2015, 48, 2443-2452; h) W. Nam, Y.-M.
Lee, S. Fukuzumi, Acc. Chem. Res. 2014, 47, 1146-1154; i) K. Ray, F.
F. Pfaff, B. Wang, W. Nam, J. Am. Chem. Soc. 2014, 136, 13942-13958;
j) J. Hohenberger, K. Ray, K. Meyer, Nat. Commun. 2012, 3, 720-732; k)
J-U. Rohde, A. Stubna, E. L. Bominaar, E. Münck, W. Nam, L. Que, Jr.
Inorg. Chem. 2006, 45, 6435-6445; l) M. Guo, T. Corona, K. Ray, W.
Nam, ACS Cent. Sci. 2019, DOI: 10.1021/acscentsci.8b00698.
[2]
a) L. Que, Jr., W. B. Tolman, Nature 2008, 455, 333-340; b) M. Milan, M.
Salamone, M. Costas, M. Bietti, Acc. Chem. Res. 2018, 51, 1984-1995;
c) L. Vicens, M. Costas, Dalton Trans. 2018, 47, 1755-1763; d) R. V.
Ottenbacher, E. P. Talsi, K. P. Bryliakov, Chem. Rec. 2018, 18, 78-90;
e) K. P. Bryliakov, Chem. Rev. 2017, 117, 11406-11459; f) R. V.
Ottenbacher, E. P. Talsi, K. P. Bryliakov, Molecules 2016, 21, 1454; g)
W. N. Oloo, L. Que, Jr., Acc. Chem. Res. 2015, 48, 2612-2621; h) A.
Fingerhut, O. V. Serdyuk, S. B. Tsogoeva, Green Chem. 2015, 17, 2042-
2058; i) O. Cusso, X. Ribas, M. Costas, Chem. Commun. 2015, 51,
14285-14298; j) A. C. Lindhorst, S. Haslinger, F. E. Kuhn, Chem.
Commun. 2015, 51, 17193-17212; k) K. P. Bryliakov, E. P. Talsi, Coord.
Chem. Rev. 2014, 276, 73-96; l) E. P. Talsi, K.P. Bryliakov, Coord. Chem.
Rev. 2012, 256, 1418-1434; m) M. Costas, K. Chen, L. Que, Jr., Coord.
Chem. Rev. 2000, 200-202, 517-544; n) S. Bang, S. Park, Y.-M. Lee, S.
Hong, K.-B. Cho, W. Nam, Angew. Chem. Int. Ed. 2014, 53, 7843-7847.
a) A. J. Jasniewski, L. Que, Jr., Chem. Rev. 2018, 118, 2554-2592; b) E.
I. Solomon, S. Goudarzi, K. D. Sutherlin, Biochemistry 2016, 55, 6363-
6374; c) C. Krebs, D. G. Fujimori, C. T. Walsh, J. M. Bollinger, Jr., Acc.
Chem. Res. 2007, 40, 484-492; d) J. C. Price, E. W. Barr, B. Tirupati, J.
M. Bollinger, Jr., C. Krebs, Biochemistry 2003, 42, 7497–7508.
Catalysis systems based on iron(II) complexes of tetradentate
N4-donor ligands and H2O2 have attracted particular attention in
the past decade due to the high efficiency and selectivity in the
preparative oxidations of C═C groups of various organic
molecules.[2] High-valent oxoiron(V) species have been proposed
and in few cases isolated as the reactive intermediate in these
reactions.[2f,2h,2i,2j,2k,5] In this work, we have demonstrated an
oxoiron(IV) complex, 2, as a catalytically relevant intermediate in
the [(cyclam)FeII]2+/H2O2 catalytic system for the stereo- and
regioselective epoxidation of olefins. Notably, 2 is generated as a
common reactive intermediate in the reactions of [(cyclam)FeII]2+
with H2O2 and sPhIO, which may explain the comparable catalytic
efficiency observed for both the oxidants. In spite of the
predominance of the oxoiron(IV) cores in biology, the present
study, to the best of our knowledge, represents a rare example
where an oxoiron(IV) species has been isolated as a kinetically
and catalytically competent reactive intermediate in chemical
oxidation reactions. Thus, this work provides a new fundamental
framework for understanding the nature of the iron-based species
responsible for performing olefin epoxidation reactions in a
synthetic biomimetic system that may have enzymatic relevance.
[3]
[4]
a) S. H. Bae, M. S. Seo, Y.-M. Lee, K.-B. Cho, W.-S. Kim, W. Nam,
Angew. Chem. Int. Ed. 2016, 55, 8027-8031; b) K.-B. Cho, H. Hirao, S.
Shaik, W. Nam, Chem. Soc. Rev. 2016, 45, 1197-1210; c) Y. H. Kwon,
B. K. Mai, Y.-M. Lee, S. N. Dhuri, D. Mandal, K.-B. Cho, Y. Kim, S. Shaik,
W. Nam, J. Phys. Chem. Lett. 2015, 6, 1472-1476; d) S. N. Dhuri, K.-B.
Cho, Y.-M. Lee, S. Y. Shin, J. H. Kim, D. Mandal, S. Shaik, W. Nam, J.
Am. Chem. Soc. 2015, 137, 8623-8632; e) Y. Suh, M. S. Seo, K. M. Kim,
Y. S. Kim, H. G. Jang, T. Tosha, T. Kitagawa, J. Kim, W. Nam, J. Inorg.
Biochem. 2006, 100, 627–633.
[5]
a) W. Nam, R. Ho, J. S. Valentine, J. Am. Chem. Soc. 1991, 113, 7052-
7054; b) R. Fan, J. Serrano-Plana, W. N. Oloo, A. Draksharapu, E.
Delgado-Pinar, A. Company, V. Martin-Diaconescu, M. Borrell, J. Lloret-
Fillol, E. García-España, Y. Guo, E. L. Bominaar, L. Que, Jr., M. Costas,
E. Münck, J. Am. Chem. Soc. 2018, 140, 3916-3928; c) O. Y. Lyakin,A.
M. Zima, D. G. Samsonenko, K. P. Bryliakov, E. P. Talsi, ACS Catal.
2015, 5, 2702-2707; d) J. Serrano-Plana, W. N. Oloo, L. Acosta-Rueda,
K. K. Meier, B. Verdejo, E. García-España, M. G. Basallote, E. Münck, L.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (UniCat; EXC
314-2 and Heisenberg Professorship to KR), MINECO
(CTQ2017-87392-P to MS), FEDER (UNGI10-4E-801 to MS) and
This article is protected by copyright. All rights reserved.