10.1002/chem.202101110
Chemistry - A European Journal
FULL PAPER
[17] Other examples of fullerene hexa-adducts with peripheral TAA subunits
have been reported. These compounds have been used to generate 3D-
nanostructures owing to their light-induced self-assembly capabilities,
see: O. Gavat, T. M. Nguyet Trinh, E. Moulin, T. Ellis, M. Maaloum, E.
Buhler, G. Fleith, J.-F. Nierengarten, N. Giuseppone, Chem. Commun.
2018, 54, 7657-7660.
Keywords: Pillar[5]arene • Triarylamine • Hole Transporting
Material • Perovskite Solar Cells • Photovoltaics
[1]
a) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendrimers and
Dendrons: Concepts, Syntheses, Applications; Wiley-VCH: Weinheim,
Germany, 2001; b) J.M.J. Fréchet, D. A. Tomalia (Eds.), Dendrimers and
Other Dendritic Polymers; John Wiley & Sons: Chichester, UK, 2001; c)
F. Vögtle, G. Richardt, N. Werner, Dendrimer Chemistry: Concepts,
Syntheses, Properties, Applications, Wiley-VCH: Weinheim, Germany,
2009; d) A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Ouali, B.
Delavaux-Nicot (Eds.), Dendrimers: Towards Catalytic, Material and
Biomedical Uses; John Wiley & Sons: Chichester, UK, 2011; e) S.
Campagna, P. Ceroni, F. Puntoriero, (Eds.), Designing dendrimers; John
Wiley & Sons: Hoboken, New Jersey, USA, 2012; f) A.-M. Caminade, C.-
O. Turrin, J.-P. Majoral,(Eds.), Phosphorous Dendrimers in Biology and
Nanomedicine: Syntheses, Characterization, and Properties, Pan
Stanford Publishing: Singapore, 2018.
[18] J. Chen, J. Xia, W.-J. Gao, H.-J. Yu, J.-X. Zhong, C. Jia, Y.-S. Qin, Z.
She, D.-B. Kuang, G. Shao, ACS Appl. Mater. Interfaces 2020, 12,
21088–21099.
[19] For a recent review on TAA materials for solar cells, see: J. Wang, K. Liu,
L. Ma, X. Zhan, Chem. Rev. 2016, 116, 14675-14725.
[20] S. Park, J. H. Heo, J. H. Yun, T. S. Jung, K. Kwak, M. J. Ko, C. H. Cheon,
J. Y. Kim, S. H. Im, H. J. Son, Chem. Sci. 2016, 7, 5517-5522.
[21] To achieve high-performance PSCs, HTMs should possess several
properties. First, their HOMO should lay higher than the valence band of
the perovskite, to effectively transport holes. Thus, the hole mobility
should also be satisfyingly high. Second, the molecules should be stable
to guarantee long-term performances. Moreover, to ensure easy
processability, they should be soluble in organic solvents and have good
film-forming properties. Finally, to avoid parasitic light absorption, they
should not absorb in the visible and near-infrared regions of the spectrum.
See: a) S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar, H.-
S. Shin, H.-K. Seo, A. M. Asiri, M. K. Nazeeruddin, ChemSusChem 2016,
9, 10- 27; b) S. Collavini, J. L. Delgado, Sustainable Energy Fuels 2018,
2, 2480-2493; c) J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N.
Martín, Chem. Soc. Rev. 2018, 47, 8541-8571; d) C. Lu, I. T. Choi, J.
Kim, H. K. Kim, J. Mater. Chem. A, 2017, 5, 20263-20276; e) M. S. Kang,
S. D. Sung, I. T. Choi, H. Kim, M. Hong, J. Kim, W. I. Lee , H. K. Kim,
ACS Appl. Mater. Interfaces, 2015, 7, 22213-22217; f) S. D. Sung, M. S.
Kang, I. T. Choi, H. M. Kim, H. Kim, M. Hong, H. K. Kim, W. I. Lee, Chem.
Commun., 2014, 50, 14161-14163; g) M. Shasti, S. F. Völker, S. Collavini,
S. Valero, F. Ruipérez, A. Mortezaali, S. M. Zakeeruddin, M. Grätzel, A.
Hagfeldt, J. L. Delgado, Org. Lett. 2019, 21, 3261-3264; h) S. Valero, S.
Collavini, S. F. Völker, M. Saliba, W. R. Tress, S. M. Zakeeruddin, M.
Grätzel, J. L. Delgado, Macromolecules 2019, 52, 2243-2254; i) N.
Marinova, S. Valero, J. L. Delgado, J. Colloid Interface Sci., 2017, 488,
373-389.
[2]
a) A. Adronov, J. M. J. Fréchet, Chem. Commun. 2000, 1701-1710; b) V.
Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. puntoriero, S.
Serroni, Coord. Chem. Rev. 2001, 219-221, 545-572.
[3]
[4]
[5]
B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam, V.
Percec, Chem. Rev. 2009, 109, 6275–6540.
M. Guillot-Nieckowski, S. Eisler, F. Diederich, New J. Chem. 2007, 31,
1111-1127.
a) Y. M. Chabre, R. Roy, Adv. Carbohydrate Chem. & Biochem. 2010,
63, 165-393; b) Y. M. Chabre, R. Roy, Chem. Soc. Rev. 2013, 42, 4657-
4708; c) P. Hoyos, A. Perona, O. Juanes, A. Rumbero, M. J. Hernaiz,
Chem. Eur. J. 2021, doi.org/10.1002/chem.202005065.
[6]
[7]
For reviews on fullerene hexa-adducts, see: a) A. Hirsch, O. Vostrowsky,
Eur. J. Org. Chem. 2001, 829-848; b) I. Nierengarten, J.-F. Nierengarten,
Chem. Rec. 2015, 15, 31-51.
a) Y. Gao, A. Eguchi, K. Kakehi, Y. C. Lee, Org. Lett. 2004, 6, 3457-
3460; b) Z. Ge, D. Wang, Y. Zhou, H. Liu, S. Liu, Macromolecules 2009,
42, 2903-2910; c) B. Trastoy, M. E. Pérez-Ojeda, R. Sastre, J. L. Chiara,
Chem. Eur. J. 2010, 16, 3833-3841.
[8]
[9]
For a review on clickable pillar[5]arene building blocks, see: T. Kakuta,
T. Yamagashi, T. Ogoshi, Chem. Commun. 2017, 53, 5250-5266.
a) X. Camps, H. Schönberger, A. Hirsch, Chem. Eur. J. 1997, 3, 561-
567; b) D. Sigwalt, M. Holler, J. Iehl, J.-F. Nierengarten, M. Nothisen, E.
Morin, J.-S. Remy, Chem. Commun. 2011, 47, 4640-4642; c) I.
Nierengarten, M. Nothisen, D. Sigwalt, T. Biellmann, M. Holler, J.-S.
Remy, J.-F. Nierengarten, Chem. Eur. J. 2013, 19, 17552-17558.
[22] For reviews on pillar[n]arenes, see: a) P. J. Cragg, K. Sharma, Chem.
Soc. Rev. 2012, 41, 597-607; b) M. Xue, Y. Yang, X. Chi, Z. Zhang, F.
Huang, Acc. Chem. Res. 2012, 45, 1294-1308; c) T. Ogoshi, J. Incl.
Phenom. Macrocycl. Chem. 2012, 72, 247-262; d) T. Ogoshi, T.-a.
Yamagishi, Eur. J. Org. Chem. 2013, 2961-2975; e) D. Cao, H. Meier,
Asian J. Org. Chem. 2014, 3, 244-262; f) T. Ogoshi, T. Yamagishi, Chem.
Commun. 2014, 50, 4776-4787; g) N. L. Strutt, H. Zhang, S. T.
Schneebeli, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2631-2642; h) K.
Yang, Y. Pei, Z. Pei, Chem. Commun. 2016, 52, 9316-9326; i) T. Ogoshi,
T.-a. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937-8002.
[23] A polycationic pillar[5]arene derivative has been used in the cathode
buffer layer of PSCs, see: H. Lei, X. Chen, L. Xue, L. Sun, J. Chen, Z.
Tan, Z.-G. Zhang, Y. Li, G. Fang, Nanoscale 2018, 10, 8088-8098.
[24] a) I. Nierengarten, S. Guerra, M. Holler, J.-F. Nierengarten, R.
Deschenaux, Chem. Commun. 2012, 48, 8072-8074; b) I. Nierengarten,
S. Guerra, M. Holler, L. Karmazin-Brelot, J. Barbera, R. Deschenaux, J.-
F. Nierengarten, Eur. J. Org. Chem. 2013, 3675-3684.
[10] a) J. Iehl, R. Pereira de Freitas, B. Delavaux-Nicot, J.-F. Nierengarten,
Chem. Commun. 2008, 2450-2452; b) P. Pierrat, S. Vanderheiden, T.
Muller, S. Bräse, Chem. Commun. 2009, 1748-1750; c) J. Iehl, J. F.
Nierengarten, Chem. Eur. J. 2009, 15, 7306-7309; d) P. Pierrat, C.
Réthoré, T. Muller, S. Bräse, Chem. Eur. J. 2009, 15, 11458-11460 ; e)
J. Iehl, J.-F. Nierengarten, Chem. Commun. 2010, 46, 4160-4162.
[11] I. Nierengarten, J.-F. Nierengarten, Chem. Asian J. 2014, 9, 1436-1444.
[12] J.-F. Nierengarten, Chem. Commun. 2017, 53, 11855-11868.
[13] a) I. Nierengarten, K. Buffet, M. Holler, S. P. Vincent and J.-F.
Nierengarten, Tetrahedron Lett., 2013, 54, 2398-2402; b) G. Yu, Y. Ma,
Y. Yao, G. Tang, Z. Mao, C. Gao, F. Huang, J. Am. Chem. Soc. 2013,
135, 10310-10313; c) N. Galanos, E. Gillon, A. Imberty, S. E. Matthews,
S. Vidal, Org. Biomol. Chem. 2016, 14, 3476-3481; d) S. P. Vincent, K.
Buffet, I. Nierengarten, A. Imberty, J.-F. Nierengarten, Chem. Eur. J.
2016, 22, 88-92.
[25] a) M. Planells, A. Abate, D. J. Hollman, S. D. Stranks, V. Bharti, J. Gaur,
D. Mohanty, S. Chand, H. J. Snaith, N. Robertson, J. Mater. Chem. A
2013, 1, 6949-6960; b) C. Lambert, G. Nöll, J. Am. Chem. Soc. 1999,
121, 8434-8442.
[14] a) B. Delavaux-Nicot, H. Ben Aziza, I. Nierengarten, T. M. N. Trinh, E.
Meichsner, M. Chessé, M. Holler, R. Abidi, E. Maisonhaute, J.-F.
Nierengarten, Chem. Eur. J. 2018, 24, 133-140; b) M. Steffenhagen, A.
Latus, T. M. N. Trinh, I. Nierengarten, I. T. Lucas, S. Joiret, J. Landoulsi,
B. Delavaux-Nicot, J.-F. Nierengarten, E. Maisonhaute, Chem. Eur. J.
2018, 24, 1701-1708.
[26] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem. Int. Ed. 2002, 41, 2596-2599; Angew. Chem. 2002, 114, 2708-
2711, b) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed.
2001, 40, 2004–2021; Angew. Chem. 2001, 113, 2056-2075.
[27] 2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene
(spiro-OMeTAD) is the reference HTM for regular structure PSCs.
However, it is not immune to drawbacks such as its high cost, which limits
the scaling up of these solar cells, and the low long-term stability due to
the degradation processes induced by temperature, additives, film
quality and environmental conditions, see: T. A. Berhe, W.-N. Su, C.-H.
[15] J. Iehl, J.-F. Nierengarten, A. Harriman, T. Bura, R. Ziessel, J. Am.
Chem. Soc. 2012, 134, 988-998.
[16] S. F. Völker, M. Vallés-Pelarda, J. Pascual, S. Collavini, F. Ruipérez, E.
Zuccatti, L. E. Hueso, R. Tena-Zaera, I. Mora-Seró, J. L. Delgado, Chem.
Eur. J. 2018, 24, 8524-8529.
8
This article is protected by copyright. All rights reserved.