F
Synlett
K. Mandai et al.
Letter
(
6) Sakuma, R.; Hashimoto, H.; Kobayashi, G.; Fujii, T.; Nakanishi,
(22) Nomura, A.; Shin, S.; Mehdi, O. O.; Kauffmann, J. M. Anal. Chem.
2004, 76, 5498.
(23) Li, Y.; Yan, B.; Deng, C. H.; Yu, W. J.; Xu, X. Q.; Yang, P. Y.; Zhang,
X. M. Proteomics 2007, 7, 2330.
(24) (a) Kawakami, K.; Ueno, M.; Takei, T.; Oda, Y.; Takahashi, R.
Process Biochem. (Oxford, U. K.) 2012, 47, 147. (b) Kawakami, K.;
Abe, D.; Urakawa, T.; Kawashima, A.; Oda, Y.; Takahashi, R.;
Sakai, S. J. Sep. Sci. Technol. (Philadelphia, PA, U. S.) 2007, 30,
3077. (c) Kawakami, K.; Sera, Y.; Sakai, S.; Ono, T.; Ijima, H. Ind.
Eng. Chem. Res. 2005, 44, 236. (d) Kataoka, S.; Takeuchi, Y.;
Harada, A.; Yamada, M.; Endo, A. Green Chem. 2010, 12, 331.
(e) Andrade, L. H.; Kroutil, W.; Jamison, T. F. Org. Lett. 2014, 16,
6092.
M.; Kanno, R.; Takano, M.; Takada, J. Mater. Lett. 2015, 139, 414.
7) Hashimoto, H.; Asaoka, H.; Nakano, T.; Kusano, Y.; Ishihara, H.;
Ikeda, Y.; Nakanishi, M.; Fujii, T.; Yokoyama, T.; Horiishi, N.;
Nanba, T.; Takada, J. Dyes Pigm. 2012, 95, 639.
(
(8) Mandai, K.; Hanata, M.; Mitsudo, K.; Mandai, H.; Suga, S.;
Hashimoto, H.; Takada, J. Tetrahedron 2015, 71, 9403.
(
9) Sakai, T.; Miyazaki, Y.; Murakami, A.; Sakamoto, N.; Ema, T.;
Hashimoto, H.; Furutani, M.; Nakanishi, M.; Fujii, T.; Takada, J.
Org. Biomol. Chem. 2010, 8, 336.
(
(
(
10) Mandai, K.; Korenaga, T.; Ema, T.; Sakai, T.; Furutani, M.;
Hashimoto, H.; Takada, J. Tetrahedron Lett. 2012, 53, 329.
11) Ema, T.; Miyazaki, Y.; Taniguchi, T.; Takada, J. Green Chem. 2013,
1
5, 2485.
(25) Typical procedure for construction of the microtube reactor:
The tube was placed in a narrow groove cut into a wooden block
(ca. 10 cm long) with almost the same width as the tube. One
side of the tube (40 cm) was connected to a diaphragm pump
via a PEEK connector and BCL/m-BIO-M (2 or 4 mg) was sucked
from the other side. BCL/m-BIO-M was retained by the mag-
netic interaction with an external assembly of neodymium
magnets placed at a middle part of the tube. The tube, wooden
stick, and the magnets were put on a wire-woven base in a
water bath filled with water (30 °C). The tube was then con-
nected to a gas-tight syringe via a PEEK connector, which was
filled with alcohol and vinyl acetate in diisopropyl ether, and
the syringe was placed on a syringe pump.
12) (a) Hashimoto, H.; Fujii, T.; Nakanishi, M.; Kusano, Y.; Ikeda, Y.;
Takada, J. Mater. Chem. Phys. 2012, 136, 1156. (b) Hashimoto, H.;
Itadani, A.; Fujii, T.; Nakanishi, M.; Asaoka, H.; Kusano, Y.; Ikeda,
Y.; Kuroda, Y.; Takada, J. Mater. Res. Bull. 2013, 48, 1174.
(
c) Hashimoto, H.; Fujii, T.; Kohara, S.; Nakanishi, K.; Yogi, C.;
Peterlik, H.; Nakanishi, M.; Takada, J. Mater. Chem. Phys. 2015,
55, 67.
1
(
13) For reaction integration using a microreactor, see: (a) Yoshida,
J.; Saito, K.; Nokami, T.; Nagaki, A. Synlett 2011, 1189. (b) Suga,
S.; Yamada, D.; Yoshida, J. Chem. Lett. 2010, 39, 404.
(14) For reviews on microflow systems for organic synthesis, see:
(a) Yoshida, J.; Nagaki, A.; Yamada, D. Drug Discovery Today
2
013, 10, e53. (b) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I.
(26) Typical procedure for kinetic resolution of secondary
alcohol in the microtube reactor: A gas-tight syringe filled
with a solution of the secondary alcohol (0.2 M) and vinyl
acetate (0.4 M) in diisopropyl ether was placed on a syringe
pump. The solution was fed at a defined flow rate and several
drops of the eluent was collected in a sample tube and directly
analyzed by HPLC. The enantiomeric excess (ee) values of the
ester and unreacted alcohol were obtained by chiral HPLC anal-
ysis. The conversion (c) and enantiomeric ratio (E) of kinetic
resolution were calculated according to a literature method.27
Kinetic resolution of 1a: The characteristics of the products
Synlett 2008, 151. (c) Ahmed-Omer, B.; Brandt, J.; Wirth, T. Org.
Biomol. Chem. 2007, 5, 733. (d) Watts, P.; Haswell, S. J. Chem. Soc.
Rev. 2005, 34, 235.
(
15) (a) Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun. 2013,
49, 9896. (b) Kim, H.; Nagaki, A.; Yoshida, J. Nat. Commun. 2011,
2, 264.
(
16) (a) Tanaka, T.; Fukase, K. Beilstein J. Org. Chem. 2009, 5, 40.
b) Tanaka, T.; Fukase, K. Org. Process Res. Dev. 2009, 13, 983.
17) (a) Tsubogo, T.; Oyamada, H.; Kobayashi, S. Nature 2015, 520,
(
(
329. (b) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev.
11
2013, 42, 8849.
were consistent with previous data.
1
(
18) Uozumi, Y.; Yamada, Y. M. A.; Beppu, T.; Fukuyama, N.; Ueno,
M.; Kitamori, T. J. Am. Chem. Soc. 2006, 128, 15994.
19) (a) Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331.
(S)-1a: H NMR (CDCl , 600 MHz): δ = 7.39–7.26 (m, 5 H), 4.91
3
(q, J = 6.6 Hz, 1 H), 1.51 (d, J = 6.6 Hz, 3 H); HPLC [CHIRALCEL
OJ-H; hexane/i-PrOH, 99:1; flow rate 0.5 mL/min; UV detection
(
(
b) Mason, B. M.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.;
λ = 254 nm]: R = 24.4 (S), 29.0 (R) min.
t
1
McQuade, D. T. Chem. Rev. 2007, 107, 2300.
(R)-2a: H NMR (CDCl , 600 MHz): δ = 7.35–7.27 (m, 5 H), 5.89
3
(20) (a) Park, C. P.; Kim, D.-P. Angew. Chem. Int. Ed. 2010, 49, 6825.
(q, J = 6.6 Hz, 1 H), 2.07 (s, 3 H), 1.54 (d, J = 6.6 Hz, 3 H); HPLC
(b) Jeong, G.-Y.; Singh, A. K.; Sharma, S.; Gyak, K. W.; Maurya, R.
[CHIRALCEL OJ-H; hexane/i-PrOH, 99:1; flow rate 0.5 mL/min;
A.; Kim, D.-P. NPG Asia Mater. 2015, 7, e173.
UV detection λ = 254 nm]: R = 60.0 (R), 64.9 (S) min.
t
(
21) (a) Li, Y.; Xu, X.; Yan, B.; Deng, C.; Yu, W.; Yang, P.; Zhang, X.
J. Proteome Res. 2007, 6, 2367. (b) Liu, J.; Lin, S.; Qi, D.; Deng, C.;
Yang, P.; Zhang, X. J. Chromatogr., A 2007, 1176, 169. (c) Li, Y.;
Yan, B.; Deng, C.; Yu, W.; Xu, X.; Yang, P.; Zhang, X. Proteomics
Kinetic resolution of 1b. The production of (S)-1b and (R)-2a
was confirmed by comparison of the H NMR spectrum of the
1
crude mixture with those of (S)-1b and (R)-2b reported previ-
11
ously.
2
2
007, 7, 2330. (d) Liu, X.; Lo, R. C.; Gomez, F. A. Electrophoresis
009, 30, 2129. (e) Riveros, T. A.; Lo, R.; Liu, X.; Valdez, A.;
HPLC [CHIRALCEL OJ-H; hexane/i-PrOH, 19:1; flow rate 0.6
mL/min, UV detection λ = 254 nm]: R = (S)-1b: 22.4 (S), 26.6 (R)
t
Lozano, M.; Gomez, F. A. Am. Lab. 2010, 42, 11. (f) Yu, D.;
Antwerpen, P. V.; Patris, S.; Blankert, B.; Kauffmann, J.-M. Comb.
Chem. High Throughput Screening 2010, 13, 455. (g) Yan, X.;
Gilman, S. D. Electrophoresis 2010, 31, 346. (h) Sheng, J.; Zhang,
L.; Lei, J.; Ju, H. Anal. Chim. Acta 2012, 709, 41.
min; (R)-2b: 42.3 (R), 56.5 (S) min.
(27) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc.
1982, 104, 7294.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F