COMMUNICATIONS
8
1
CH
H, 2-adamantanol CH), 0.45 (s, 4H, 2-adamantanol CH), 0.24 (d, 8H, J
2.5 Hz, 2-adamantanol CH
), 0.10 (d, 8H, J 12.5 Hz, 2-adamantanol
), 0.06 (d, 8H, J 12.5 Hz, 2-adamantanol CH ), � 0.10 (s, 4H,
1996, 35, 1084 ± 1086. g) T. N. Parac, D. L. Caulder, K. N. Raymond, J.
Am. Chem. Soc. 1998, 120, 8003 ± 8004, and references therein.
[13] a) M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K.
Ogura, Nature 1995, 378, 469 ± 471; b) A closely related complex: P. J.
Stang, B. Olenyuk, D. C. Muddiman, R. D. Smith, Organometallics
1997, 119, 3094 ± 3096.
2
2
2
1
3
2
-adamantanol CH), � 0.43 (s, 8H, 2-adamantanol CH
2
); C NMR
(
125 MHz, D
2
O): d 170.1 (Cq), 153.4 (CH), 145.2 (Cq), 126.0 (CH),
7
4.0 (2-adamantanol CH), 47.8 (CH
2
), 37.2 (2-adamantanol CH
2
), 36.1 (2-
II
adamantanol CH
2
), 31.0 (2-adamantanol CH
2
), 27.3 (2-adamantanol CH),
[14] Guest-templated synthesis of a stable Pt derivative of 1: F. Ibukuro,
2
6.8 (2-adamantanol CH).
T. Kusukawa, M. Fujita, J. Am. Chem. Soc. 1998, 120, 8561 ± 8562.
[15] o-Carborane ± azacrown ether (1:1) complex has been reported: P. D.
Godfrey, W. J. Grigsby, P. J. Nichols, C. L. Raston, J. Am. Chem. Soc.
1997, 119, 9283 ± 9284.
1
1
8
2
´ (6)
4
: H NMR (500 MHz, D
2
O): d 9.29 (d, J 6.6 Hz, 24H, Py Ha),
.65 (d, J 6.6 Hz, 24H, Py Hb), 4.09 (s, 12H, trimethoxybenzene CH),
1
3
.98 (s, 24H, -NCH
O): d 169.9 (Cq), 160.6 (trimethoxybenzene Cq), 153.3 (CH) 145.9
Cq), 126.2 (CH), 92.0 (trimethoxybenzene CH), 54.5 (CH O) 47.8
2 2 3
CH N-), 2.43 (br s, 36H, CH O); C NMR (125 MHz,
[
16] R. J. Blanch, M. W. Williams, G. D. Fallon, M. G. Gardiner, R.
Kaddour, C. L. Raston, Angew. Chem. 1997, 109, 520 ± 522; Angew.
Chem. Int. Ed. Engl. 1997, 36, 504 ± 505.
D
2
(
(
3
2 2
-NCH CH N-).
[
17] In contrast, CH signal of carborane does not shift significantly
implying the inclusion geometry with electronegative BH groups
located inside and electropositive CH groups located outside. Four
guest molecules are likely to reside in tetrahedral positions around the
1
1
´ 7: H NMR (500 MHz, D
2
O): d 9.28 (br s, 24H, Py Ha), 8.72 (br s, 24H,
CH
N-), � 0.12 (s, 27H,
O): d 170.1 (Cq), 153.3 (CH) 149.0 (7 Ar
Cq), 146.3 (Cq), 126.0 (CH), 47.8 (-NCH CH N-), 33.8 (tBu Cq), 30.4 (tBu
CH ).
Py Hb), 4.8 (s, 3H, 7 Ar CH), 2.99 (s, 24H, -NCH
2
2
tBu); 13C NMR (125 MHz, D
2
2
2
II
center of the cage, directed away from the octahedrally positioned Pd
3
centers. See the X-ray structure of 1 ´ (G)
late) reported in ref.
4
(G adamantanecarboxy-
[
13]
Received: June 2, 1998 [Z11936IE]
German version: Angew. Chem. 1998, 110, 3327 ± 3329
[18] The broadening of the signals is probably due to a slow exchange on
the NMR time scale between the free and complexed host.
[
19] The assignment of the signals was confirmed by H ± H COSY, C ± H
Keywords: adamantanes ´ boron ´ clusters ´ molecular
recognition ´ palladium
COSY, NOESY, H ± C HMBC.
[
20] The 1:4 stoichiometry was estimated by the Job plot method.
21] Force-field calculation clearly shows that tri-tert-butylbenzene is
slightly larger than the portals of 1.
[
[
[
1] a) D. J. Cram, Nature 1992, 356, 29 ± 36; b) D. J. Cram, M. T. Tanner,
R. Thomas, Angew. Chem. 1991, 103, 1048 ± 1051; Angew. Chem. Int.
Ed. Engl. 1991, 30, 1024 ± 1027.
2] a) R. Warmuth, Angew. Chem. 1997, 109, 1406 ± 1409; Angew. Chem.
Int. Ed. Engl. 1997, 36, 1347 ± 1350; b) R. Warmuth, J. Chem. Soc.
Chem. Commun. 1995, 59 ± 60.
Nickel and Palladium Catalysis in the
Stereoselective Synthesis of Functionalized
Pyrrolidines: Enantioselective Formal
Synthesis of ()-a-Allokainic Acid
[
[
3] J. Kang, J. Rebek, Jr., Nature 1997, 385, 50 ± 52.
4] S. Watanabe, K. Goto, T. Kawashima, R. Okazaki, J. Am. Chem. Soc.
1997, 119, 3195 ± 3196.
[
[
[
5] a) J. Yoon, D. J. Cram, J. Am. Chem. Soc. 1997, 119, 11796 ± 11806; b) J.
Yoon, D. J. Cram, Chem. Commun. 1997, 497 ± 498; c) J. Yoon, D. J.
Cram, Chem. Commun. 1997, 2065 ± 2066; d) R. C. Helgeson, K. Paek,
C. B. Knobler, E. F. Maverick, D. J. Cram, J. Am. Chem. Soc. 1993,
Maxim V. Chevliakov and John Montgomery*
115, 10111 ± 10116.
(
)-a-Allokainic acid and (� )-a-kainic acid are represen-
6] a) P. Timmerman, W. Verboom, F. C. J. M. van Veggel, J. P. M.
van Duynhoven, D. N. Reinhoudt, Angew. Chem. 1994, 106, 2437 ±
tative members of the kainoid family of neuroexcitatory
amino acids whose biological activity has been attributed to
their action as conformationally restricted analogues of
2440; Angew. Chem. Int. Ed. Engl. 1994, 33, 2345 ± 2348; b) B.-H.
Huisman, D. M. Rudkevich, F. C. M. van Veggel, D. N. Reinhoudt, J.
Am. Chem. Soc. 1996, 118, 3523 ± 3524.
[1]
glutamate (Scheme 1). Extensive structure ± activity studies
7] J. R. Fraser, B. Borecka, J. Trotter, J. C. Sherman, J. Org. Chem. 1995,
have demonstrated that the C-4 isopropenyl substituent is the
60, 1207 ± 1213.
[
[
8] C. Sheu, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 8056 ± 8070.
9] a) R. S. Meissner, J. Rebek, Jr., J. de Mendoza, Science 1995, 270,
1
1
485 ± 1488; b) N. Branda, R. Wyler, J. Rebek, Jr. Science 1994, 263,
267 ± 1268; c) R. Meissner, X. Garcias, S. Mecozzi, J. Rebek, Jr., J.
Am. Chem. Soc. 1997, 119, 77 ± 85; c) B. C. Hamann, K. D. Shimizu, J.
Rebek, Jr., Angew. Chem. 1996, 108, 1425 ± 1427; Angew. Chem. Int.
Ed. Engl. 1996, 35, 1326 ± 1329.
[
[
10] L. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469 ± 472.
11] a) J. Scheerder, R. H. Vreekamp, J. F. Engbersen, W. Verboom,
J. P. M. van Duynhoven, D. N. Reinhoudt, J. Org. Chem. 1996, 61,
Scheme 1. Kainoid natural products.
3
476 ± 3481; b) R. H. Vreekamp, W. Verboom, D. N. Reinhoudt, J.
[
*] Prof. J. Montgomery, M. V. Chevliakov
Org. Chem. 1996, 61, 4282 ± 4288.
Department of Chemistry,
Wayne State University
[
12] Self-assembled cage compounds containing metals: a) R. W. Saal-
frank, A. Stark, K. Peters, H. G. von Schnering, Angew. Chem. 1988,
Detroit, MI 48202-3489 (USA)
Fax: (1)313-577-1377
1
00, 878 ± 880; Angew. Chem. Int. Ed. Engl. 1988, 27, 851 ± 853; b) P.
Baxter, J.-M. Lehn, A. DeCian, J. Fischer, Angew. Chem. 1993, 105,
2 ± 95; Angew. Chem. Int. Ed. Engl. 1993, 32, 69 ± 72; c) S. Mann, G.
E-mail: jwm@chem.wayne.edu
9
Huttner, L. Zsolnai, K. Heinze, Angew. Chem. 1996, 108, 2983 ± 2984;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2808 ± 2809; d) P. Jacopozzi, E.
Dalcanale, Angew. Chem. 1997, 109, 665 ± 667; Angew. Chem. Int. Ed.
Engl. 1997, 36, 613 ± 615; e) C. M. Hartshorn, P. J. Steel, Chem.
Commun. 1997, 541 ± 542. f) T. Beissel, R. E. Powers, K. N. Raymond,
Angew. Chem. 1996, 108, 1166 ± 1168; Angew. Chem. Int. Ed. Engl.
[**] This work was supported by the National Institutes of Health. J.M.
acknowledges receipt of a National Science Foundation CAREER
Award, a Camille Dreyfus Teacher-Scholar Award, and a 3M
Pharmaceuticals New Faculty Award. M.V.C. acknowledges receipt
of a Graduate Research Assistantship Award from Wayne State
University. The authors thank H e l eÁ ne Fain for helpful suggestions.
3
144
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3722-3144 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1998, 37, No. 22