Y.-Q. Tang et al. / Journal of Organometallic Chemistry 696 (2011) 3741e3744
3743
Table 3
Acknowledgements
Varied loading of NHCePd(II)eIm 1a for the Suzuki-Miyaura reactions.
OMe
Financial support from the National Natural Science Foundation
of China (No. 21002072), and the start-up fund of Wenzhou
University is greatly acknowledged. Yi-Qiang Tang thanks the
Science and Technology Department of Zhejiang Province for
financial support (No. 2010R424050).
Cl
B(OH)2
1a (X mol%)
.
K3PO4 H2O (2.0 equiv)
+
H2O, THF, 50 oC
R1
2
Appendix. Supplementary material
OMe
3a
R1
4
Supplementary material associated with this article can be
042. These data include MOL files and InChiKeys of the most
important compounds described in this article.
Entry
2 (R1)
[X]
Time (h)
Yield (%)c
1a
2b
3a
4b
2a (H)
2a
0.1
0.01
0.1
12
24
12
24
4a, 99
4a, 96
4b, 88
4b, 84
2c (Me)
2c
0.01
References
a
Reaction conditions: 2 (5.0 mmol), 3a (1.2 equiv), 1a (0.1 mol%), K3PO4∙3H2O
(2.0 equiv), N2, 50 ꢁC, 12 h.
[1] A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, second
ed. Wiley, New York, 2004.
[2] E.-i. Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis.
Wiley, New York, 2002.
b
Reaction conditions: 2 (20.0 mmol), 3a (1.2 equiv), 1a (0.01 mol%), K3PO4∙3H2O
(2.0 equiv), N2, 50 ꢁC, 24 h.
c
Isolated yields.
[3] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron. Lett. 20 (1979) 3437e3440.
[4] N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457e2483.
[5] A. Suzuki, J. Organomet. Chem. 576 (1999) 147e168.
[6] N. Miyaura, J. Organomet. Chem. 653 (2002) 54e57.
[7] N. Miyaura, Topics in Current Chemistry, vol. 219, Springer Verlag, Berlin,
2002.
Sterically hindered substrate such as 2,6-dimethylchlorobenzene 2j
was also found to be a suitable substrate and very high yields of the
corresponding products 4k and 4l were obtained, respectively
(Table 2, entries 14 and 15).1-Naphthylboronic acid 3h, as well as 2-
naphthylboronic acid 3i, was also found to be a suitable substrate
for the coupling with 2,6-dimethylchlorobenzene 2j, 4-
methoxyphenyl chloride 2b and 2-methylphenyl chloride 2e
(Table 2, entries 15e18). Reactions involving heteroaryl boronic
acid such as 3-furylboronic acid 3j (Table 2, entry 19) and heteroaryl
chloride such as 2-chloro-pyridine 2k (Table 2, entry 20) also gave
very high yields.
Once the catalytic activities of the NHCePd(II)eIm complex 1a
in the Suzuki-Miyaura coupling reactions of aryl chlorides with
arylboronic acids was ascertained, we then investigated the influ-
ence of the mol% on the activity. Using K3POꢀ43H2O as the base,
0.1 mol% and 0.01 mol% NHCePd(II)eIm complex 1a were used for
the reactions of chlorobenzene 2a and 4-methylphenyl chloride 2c
with 4-methoxyphenylboronic acid 3a at 50 ꢁC, respectively
(Table 3). Almost no effect on the yields was observed when the mol
% of Pd catalyst was decreased from 1.0 to 0.1 to 0.01 mol% for the
reaction of chlorobenzene 2a with 4-methoxyphenylboronic acid
3a (Table 3, entries 1 and 2 vs Table 1, entry 3). Comparable yields
were obtained when the mol% of Pd catalyst was decreased from
1.0 to 0.1 to 0.01 mol% for the reaction of 4-methylphenyl chlo-
ride 2c with 4-methoxyphenylboronic acid 3a at 50 ꢁC (Table 3,
entries 3 and 4 vs Table 2, entry 7). It should also be noted here
that large-scale couplings (20.0 mmol) were achieved with
0.01 mol% catalyst loading in comparable yields (Table 3, entries
2 and 4), which make the reactions suitable toward an industrial
level.
[8] A. Suzuki, Chem. Commun. (2005) 4759e4763.
[9] F. Alonso, I.P. Beletskaya, M. Yus, Tetrahedron 64 (2008) 3047e3101.
[10] G.A. Molander, B. Canturk, Angew. Chem. Int. Ed. 48 (2009) 9240e9261.
[11] R. Martin, S.L. Buchwald, Acc. Chem. Res. 41 (2008) 1461e1473.
[12] V.V. Grushin, H. Alper, in: S. Murai (Ed.), Activation of Unreactive Bonds and
Organic Synthesis, Springer, Berlin, 1999, pp. 193e226.
[13] V.V. Grushin, H. Alper, Chem. Rev. 94 (1994) 1047e1062.
[14] A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176e4211.
[15] J.F. Hartwig, Synlett (2006) 1283e1294.
[16] E.A.B. Kantchev, J. O’Brien, M.G. Organ, Angew. Chem. Int. Ed. 46 (2007)
2768e2813.
[17] G.C. Fu, Acc. Chem. Res. 41 (2008) 1555e1564.
[18] M.G. Organ, G.A. Chass, D.-C. Fang, A.C. Hopkinson, C. Valente, Synthesis
(2008) 2776e2797.
[19] U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 44 (2005) 366e374.
[20] W.A. Herrmann, Angew. Chem. Int. Ed. 41 (2002) 1290e1309.
[21] N. Marion, S.P. Nolan, Acc. Chem. Res. 41 (2008) 1440e1449.
[22] E. Peris, R.H. Crabtree, Coord. Chem. Rev. 248 (2004) 2239e2246.
[23] W.A. Herrmann, K. Öfele, D. von Preysing, K.S. Schneider, J. Organomet. Chem.
687 (2003) 229e248.
[24] F.E. Hahn, M.C. Jahnke, Angew. Chem. Int. Ed. 47 (2008) 3122e3172.
[25] F. Glorius, N-Heterocyclic Carbenes in Transition Metal Catalysis. Springer-
Verlag, Berlin, Germany, 2007.
[26] S.P. Nolan, N-Heterocyclic Carbenes in Synthesis. Wiley-VCH, Weinheim,
Germany, 2006.
[27] S. Díez-González, S.P. Nolan, Coord. Chem. Rev. 251 (2007) 874e883.
[28] R. Jackstell, M.G. Andreu, A. Frisch, K. Selvakumar, A. Zapf, H. Klein,
A. Spannenberg, D. Röttger, O. Briel, R. Karch, M. Beller, Angew. Chem. Int. Ed.
41 (2002) 986e989.
[29] A. Zapf, M. Beller, Chem. Commun. (2005) 431e440.
[30] K. Selvakumar, A. Zapf, M. Beller, Org. Lett. 4 (2002) 3031e3033.
[31] L.R. Titcomb, S. Caddick, F.G.N. Cloke, D.J. Wilson, D. McKerrecher, Chem.
Commun. (2001) 1388e1389.
[32] K. Arentsen, S. Caddick, F.G.N. Cloke, A.P. Herring, P.B. Hitchcoke, Tetrahedron.
Lett. 45 (2004) 3511e3515.
[33] A.K. de Lewis, S. Caddick, F.G.N. Cloke, N.C. Billingham, P.B. Hitchcock,
J. Leonard, J. Am. Chem. Soc. 125 (2003) 10066e10073.
[34] Z. Jin, S.-X. Guo, X.-P. Gu, L.-L. Qiu, H.-B. Song, J.-X. Fang, Adv. Synth. Catal. 351
(2009) 1575e1585.
[35] D.R. Jensen, M.J. Schultz, J.A. Mueller, M.S. Sigman, Angew. Chem. Int. Ed. 42
(2003) 3810e3813.
4. Conclusion
[36] G.D. Frey, J. Schütz, E. Herdtweck, W.A. Herrmann, Organometallics 24 (2005)
4416e4426.
[37] Z. Jin, L.-L. Qiu, Y.-Q. Li, H.-B. Song, J.-X. Fang, Organometallics 29 (2010)
6578e6586.
[38] L. Zhu, T.-T. Gao, L.-X. Shao, Tetrahedron 67 (2011) 5150e5155.
[39] X.-Y. Xu, B.-C. Xu, Y.-X. Li, S.H. Hong, Organometallics 29 (2010)
6343e6349.
[40] D.R. Snead, S. Inagaki, K.A. Abboud, S. Hong, Organometallics 29 (2010)
1729e1739.
In conclusion, well-defined NHCePd(II)eIm complexes derived
from readily available starting materials as IPrꢀHCl or IMesꢀHCl,
PdCl2 and 1-methylimidazole showed high catalytic activity in the
Suzuki-Miyaura coupling reactions of aryl chlorides at room
temperature. Under optimal conditions, the corresponding
coupling products can be achieved in good to high yields.
Furthermore, the reactions with the catalyst loading down to
0.01 mol% were also successfully achieved in comparable yields.
[41] C.-Y. Liao, K.-T. Chan, C.-Y. Tu, Y.-W. Chang, C.-H. Hu, H.M. Lee, Chem. Eur. J. 15
(2009) 405e417.