Journal of the American Chemical Society
Page 4 of 6
a
b
e
h
c
1
2
3
4
5
6
7
8
(1) Bottanelli, F.; Kromann, E. B.; Allgeyer, E. S.; Erdmann, R. S.; Wood
CNDPDSB
N
O
N+
Baguley, S.; Sirinakis, G.; Schepartz, A.; Baddeley, D.; Toomre, D. K.;
Rothman, J. E.; Bewersdorf, J. Two-colour live-cell nanoscale imaging
of intracellular targets. Nat. Commun. 2016, 7, 10778.
(2) Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.;
Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y.; Choi, B. L.; Kuk,
Y.; Kim, J. M.; Kim, K. Full-colour quantum dot displays fabricated by
transfer printing. Nat. Photonics 2011, 5, 176-182.
(3) Wang, D.; Yang, A.; Wang, W.; Hua, Y.; Schaller, R. D.; Schatz, G.
C.; Odom, T. W. Band-edge engineering for controlled multi-modal
nanolasing in plasmonic superlattices. Nat. Nanotechnol. 2017, 12,
889-894.
(4) Zhang, C.; Zou, C.-L.; Dong, H.; Yan, Y.; Yao, J.; Zhao, Y. S. Dual-
color single-mode lasing in axially coupled organic nanowire
resonators. Sci. Adv. 2017, 3, e1700225.
(5) Lv, Y.; Li, Y. J.; Li, J.; Yan, Y.; Yao, J.; Zhao, Y. S. All-color
subwavelength output of organic flexible microlasers. J. Am. Chem.
Soc. 2017, 139, 11329-11332.
(6) Okada, D.; Azzini, S.; Nishioka, H.; Ichimura, A.; Tsuji, H.;
Nakamura, E.; Sasaki, F.; Genet, C.; Ebbesen, T. W.; Yamamoto, Y. π-
Electronic co-crystal microcavities with selective vibronic-mode light
amplification: Toward Förster resonance energy transfer lasing. Nano
Lett. 2018, 18, 4396-4402.
c1
c2
-
SO3
CN
CN
-
Na+
SO3
Sulforhodamine 101
d
f
f1
O
O
f2
Coumarin 153
HCl
CF3
N
O
N
H
9
N
O
O
Rhodamine 6G
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
g
i
i1
OH
O
i2
Coumarin 6
N
O
N+
Cl-
N
Rhodamine B
S
N
O
O
Figure 4. Molecular structures of sulforhodamine 101 and
CNDPDSB (a); rhodamine 6G and coumarin 153 (d); rhoda-
mine B and coumarin 6 (g). (b, e, h) PL images of the Janus
microspheres doped with corresponding dyes. (c, f, i) Normal-
ized lasing spectra of the Janus microspheres shown in the in-
set. Scale bars: 5 μm.
(7) Ta, V. D.; Yang, S.; Wang, Y.; Gao, Y.; He, T.; Chen, R.; Demir, H.
V.; Sun, H. Multicolor lasing prints. Appl. Phys. Lett. 2015, 107, 221103.
(8) Cerdán, L.; Enciso, E.; Martin, V.; Banuelos, J.; Lopez-Arbeloa, I.;
Costela, A.; Garcia-Moreno, I. FRET-assisted laser emission in
colloidal suspensions of dye-doped latex nanoparticles. Nat.
Photonics 2012, 6, 621-626.
(9) Yang, Z.; Wang, D.; Meng, C.; Wu, Z.; Wang, Y.; Ma, Y.; Dai, L.;
Liu, X.; Hasan, T.; Liu, X.; Yang, Q. Broadly defining lasing
wavelengths in single bandgap-graded semiconductor nanowires.
Nano Lett. 2014, 14, 3153-3159.
(10) Liu, Z.; Yin, L.; Ning, H.; Yang, Z.; Tong, L.; Ning, C.-Z. Dynamical
color-controllable lasing with extremely wide tuning range from red
to green in a single alloy nanowire using nanoscale manipulation.
Nano Lett. 2013, 13, 4945-4950.
(11) Ning, C.-Z.; Dou, L.; Yang, P. Bandgap engineering in
semiconductor alloy nanomaterials with widely tunable
compositions. Nat. Rev. Mater. 2017, 2, 17070.
(12) Quochi, F.; Schwabegger, G.; Simbrunner, C.; Floris, F.; Saba, M.;
Mura, A.; Sitter, H.; Bongiovanni, G. Extending the lasing wavelength
coverage of organic semiconductor nanofibers by periodic organic–
organic heteroepitaxy. Adv. Opt. Mater. 2013, 1, 117-122.
(13) Dou, L.; Lai, M.; Kley, C. S.; Yang, Y.; Bischak, C. G.; Zhang, D.;
Eaton, S. W.; Ginsberg, N. S.; Yang, P. Spatially resolved multicolor
CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl.
Acad. Sci. U.S.A. 2017, 114, 7216-7221.
(14) Fan, F.; Turkdogan, S.; Liu, Z.; Shelhammer, D.; Ning, C. Z. A
monolithic white laser. Nat. Nanotechnol. 2015, 10, 796-803.
(15) Xu, J.; Ma, L.; Guo, P.; Zhuang, X.; Zhu, X.; Hu, W.; Duan, X.; Pan,
A. Room-temperature dual-wavelength lasing from single-
nanoribbon lateral heterostructures. J. Am. Chem. Soc. 2012, 134,
12394-12397.
(16) Zhuang, X.; Guo, P.; Zhang, Q.; Liu, H.; Li, D.; Hu, W.; Zhu, X.;
Zhou, H.; Pan, A. Lateral composition-graded semiconductor
nanoribbons for multi-color nanolasers. Nano Res. 2016, 9, 933-941.
(17) Walther, A.; Müller, A. H. E. Janus particles: Synthesis, self-
assembly, physical properties, and applications. Chem. Rev. 2013, 113,
5194-5261.
(18) Chen, D.; Amstad, E.; Zhao, C.-X.; Cai, L.; Fan, J.; Chen, Q.; Hai,
M.; Koehler, S.; Zhang, H.; Liang, F.; Yang, Z.; Weitz, D. A.
Biocompatible amphiphilic hydrogel–solid dimer particles as colloidal
surfactants. ACS Nano 2017, 11, 11978-11985.
In summary, we developed a general approach to the syn-
thesis of binary fluorescent organic Janus microspheres, which
serve as side-by-side coupled WGM cavities for the achieve-
ment of dual-color microlasers. The connected WGM cavities
can be separately modulated, offering the possibility to
achieve novel photonic functionalities in the compact Janus
structures. Moreover, the flexibility and compatibility of the
Janus microspheres enable to flexibly design the lasing wave-
length from the two hemispheres by doping with various dyes,
demonstrating a general synthetic strategy for the dual-color
microlasers across the full visible spectrum. We anticipate
that our results will provide beneficial enlightenment for the
design of multifunctional nanophotonic materials with novel
performances and applications.
ASSOCIATED CONTENT
Supporting Information
Experimental details and additional data. The Supporting In-
formation is available free of charge on the ACS Publications
website.
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported financially by the Ministry of Science
and Technology of China (Grant No. 2017YFA0204502), and
the National Natural Science Foundation of China (Grant Nos.
21790364, 21805246 and 21533013).
(19) Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y.
H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of
highly stable CsPbX3/oxide Janus nanoparticles. J. Am. Chem. Soc.
2018, 140, 406-412.
(20) Liang, F.; Zhang, C.; Yang, Z. Rational design and synthesis of
Janus composites. Adv. Mater. 2014, 26, 6944-6949.
REFERENCES
ACS Paragon Plus Environment