DEUTERIUM REDOR
65
6
7
8
9
. C. G. Hoelger, F. Aguilar-Parilla, J. Elguero, O. Weintraub, S. Vega,
and H. H. Limbach, J. Magn. Res. A 120, 46 (1996).
cos /2 0 Ϫsin /2
D ϭ
0
1
0
0
[A6]
[A7]
ͩ
ͪ
. H. Benedict, C. Hoelger, F. Aguilar-Parrilla, W. P. Fehlhammer, M.
Wehlan, R. Janoschek, and H. H. Limbach, J. Mol. Struct. 378, 11 (1996).
sin /2
cos /2
. H. Benedict, H. H. Limbach, M. Wehlan, W. P. Fehlhammer, N. S.
Golubev, and R. Janoschek, J. Am. Chem. Soc. 120, 2939 (1998).
and
. M. D. Lumsden, R. E. Wasylishen, K. Eichele, M. Schindler, G. H.
Penner, W. P. Power, and R. D. Curtis, J. Am. Chem. Soc. 116,
1403 (1994).
˜
xx
D
eff
2
2 1/ 2
˜
ϭ ͑͑ ˜ ͒ ϩ ͑ ˜ ͒ ͒
;
tan ϭ
.
D
D
xx
˜
1
1
0. G. Buntkowsky, I. Sack, H.-H. Limbach, B. Kling, and J. Fuhrhop,
J. Phys. Chem. B 101, 11265 (1997).
The matrix representation of the operator S has the form
x
1. M. Emshwiller, E. L. Hahn, and D. E. Kaplan, Phys. Rev. Lett. 118,
4
14 (1960).
1
0
I
d
0
12. M. E. Stoll, A. J. Vega, and R. W. Vaughan, J. Chem. Phys. 65, 4093
Sx ϭ ͩ ͪ
[A8]
2
I
d
(1976).
1
3. J. S. Waugh, Proc. Natl. Acad. Sci. USA 73, 1394 (1976).
with I a 3 ϫ 3 unit matrix.
14. T. Gullion and J. Schaefer, Adv. Magn. Opt. Reson. 13, 57 (1989).
d
The signal in Eq. [A1] can be evaluated by insertion of Eqs. 15. T. Gullion and J. Schaefer, J. Magn. Reson. 81, 196 (1989).
[
A4–A7] and t ϭ 2nTR:
16. J. Schaefer, E. O. Stejskal, and R. Buchdahl, Macromolecules 8,
91 (1975).
17. T. Gullion, Chem. Phys. Lett 246, 325 (1995).
2
Ϫi⌳t Ϫ1
i⌳t Ϫ1
Ϫ
S͑t͒ ϭ Tr͑⌬e
⌬
Sx⌬e
⌬
S ͒
1
1
2
8. L. Chopin, T. Gullion, and S. Vega, J. Am. Chem. Soc. 120, 4406 (1998).
9. A. Schmidt, R. A. McKay, and J. Schaefer, J. Magn. Res. 96, 644 (1992).
Ϫi⌳ ͑0͒t
Ϫ2 i⌳ ␣͑0͒
t
2
ϭ Tr͑e
D
e
D ͒,
[A9]
0. A. Schmidt, T. Kowalewski, and J. Schaefer, Macromolecules 26,
which has the explicit form of Eq. [16]:
1729 (1993).
2
1. C. A. Klug, P. Lani Lee, I. S. H. Lee, M. M. Kreevoy, R. Yaris, and
J. Schaefer, J. Phys. Chem. B 101, 8086 (1997).
1
3
2
3
2
eff
2
S͑t͒ ϭ ϩ ͑cos cos ˜ D t ϩ sin ͒.
[A10]
2
2
2
2. P. L. Lee and J. Schaefer, Macromolecules 28, 2577 (1995).
3. P. L. Lee and J. Schaefer, Macromolecules 28, 1921 (1995).
4. T. Gullion, and J. Schaefer, J. Magn. Reson. 92, 439 (1991).
ACKNOWLEDGMENTS
Support by the German Israel Foundation under G.I.F. Research Grant 25. Counsell, M. H. Levitt, and R. R. Ernst, J. Magn. Reson. 63, 133
I-297.092.05/93 and by the Sonderforschungsbereich 448 “Mesoskopisch
Strukturierte Verbundsysteme” of the Deutsche Forschungsgemeinschaft, as
well as the Fonds der Chemischen Industrie, Frankfurt, is gratefully acknowl-
edged.
(1985).
2
2
2
6. M. H. Levitt, D. Suter, and R. R. Ernst, J. Chem. Phys. 80, 3064 (1984).
7. M. H. Levitt, Prog. NMR Spectrosc. 18, 61 (1986).
8. H. J. Wasserman, R. R. Ryan, and S. P. Layne, Acta Crystallogr. 41,
7
83 (1985).
REFERENCES
2
3
9. C. J. Brown, Acta Crystallogr. 21, 442 (1966).
0. S. W. Johnson, J. Eckert, M. Barthes, R. K. McMullan, and M.
Muller, J. Phys. Chem. 99, 16253 (1995).
1
2
3
4
5
. M. Mehring, “High Resolution NMR Spectroscopy in Solids,”
Springer-Verlag, Berlin/Heidelberg/New York (1983).
3
3
3
1. V. B. Cheng, H. H. Suzukawa, and M. Wolfsberg, J. Chem. Phys.
. C. P. Slichter, “Principles of Magnetic Resonance,” Third ed.,
Springer-Verlag, Berlin/Heidelberg/New York (1990).
5
9, 3992 (1973).
2. U. Haeberlen, “High Resolution NMR in Solids. Selective Averag-
. R. Ernst, G. Bodenhausen, and A. Wokaun, “Principles of NMR in
One and Two Dimensions,” Clarendon, Oxford (1987).
ing,” Academic Press, New York (1976).
3. O. Weintraub and S. Vega, J. Magn. Reson. A 105, 245 (1993).
. K. Schmidt-Rohr and H. W. Spiess, “Multidimensional Solid State
NMR and Polymers,” Academic Press, London (1994).
34. A. E. Bennett, R. G. Griffin, and S. Vega, Springer Ser. NMR 33, 1 (1994).
35. Organikum, VEB Verlag der Wissenschaften, Berlin (1986).
. C. G. Hoelger and H. H. Limbach, J. Phys. Chem. 98, 11803 (1994).