ORGANIC
LETTERS
2
006
Vol. 8, No. 2
49-351
Synthesis of Enantiopure Allylamines by
Reductive Alkylation of Amino Epoxides
with Organolithium Reagents
3
Jos e´ M. Concell o´ n,* Jos e´ Ram o´ n Su a´ rez, and Virginia del Solar
Departamento de Qu ´ı mica Org a´ nica e Inorg a´ nica, Facultad de Qu ´ı mica UniVersidad
de OViedo, Juli a´ n ClaVer ´ı a, 8, 33071 OViedo, Spain
jmcg@unioVi.es
Received December 7, 2005
ABSTRACT
Transformation of enantiopure (2R,1′S)-2-(1-aminoalkyl)epoxides 1 into the corresponding allylamines 2 is described. The opening of the
epoxide ring with different organolithium compounds takes place with total selectivity and in high yields.
Chiral allylamines are important building blocks and have
been used as synthetic precursors to prepare a number of
important classes of compounds, such as R- and â-amino
developed in comparison with the racemic synthesis. The
synthesis of chiral allylamines is generally achieved by (a)
7
amination of enantiopure allyl alcohols or their derivatives,
1
2
3
8
acids, alkaloids, carbohydrate derivatives, and other com-
(b) asymmetric amination of nonfunctional alkenes, or (c)
from R-amino aldehydes. However, general methods to
4
9
pounds.
5
In addition, allylamines are also of industrial interest. For
prepare allylamines with an enantiomeric excess (ee) > 99%,
these reasons, many efficient methods for the racemic
synthesis of allylamines have been reported. However, the
asymmetric synthesis of allylamines has not been so well
in which only one regioisomer is obtained and the double
6
(7) Examples of asymmetric synthesis of allylamines from allyl alcohols
derivatives. From allyl imidates: (a) Celter, M.; Hollis, T. K.; Overman,
L. E.; Ziller, J.; Zipp, G. G. J. Org. Chem. 1997, 62, 1449-1456. (b) Metz,
P.; Mues, C.; Schoop, A. Tetrahedron 1992, 48, 1071-1080. By amination
of allylic esters catalyzed by transition metal complexes: (c) Togni, A.;
Burckhardt, U.; Gramlich, V.; Pregosin, P. S.; Salzmann, R. J. Am. Chem.
Soc. 1996, 118, 1031-1037. (d) Burckhardt, U.; Baumann, M.; Trabesinger,
G.; Gramlich, V.; Togni, A. Organometallics 1997, 16, 5252-5259. (e)
Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1994, 116, 4089-4090. (f)
Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem. Soc. 1999, 121,
6761-6762. (g) Wang, Y.; Ding, K. J. Org. Chem. 2001, 66, 3238-3241.
(h) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164-15165.
(i) Tollabi, M.; Framery, E.; Goux-Henry, C.; Sinou, D. Tetrahedron:
Asymmetry 2003, 14, 3329-3333. (j) Faller, J. W.; Wilt, J. C. Org. Lett.
2005, 7, 633-636. From vinyl epoxides: (k) Trost, B. M.; Bunt, R. C.
Angew. Chem., Int. Ed. Engl. 1996, 35, 99-102. From allyl ethers: (l)
Enders, D.; Finkam, M. Synlett 1993, 401-402.
(
1) (a) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.;
Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301-6311. (b) Jumnah, R.;
Williams, J. M. J.; Williams, A. C. Tetrahedron Lett. 1993, 34, 6619-
6
622. (c) Bower, J. F.; Jumnah, R.; Williams, A. C.; Williams, J. M. J. J.
Chem. Soc., Perkin Trans. 1 1997, 1411-1420. (d) Burgess, K.; Liu, L.
T.; Pal, B. J. Org. Chem. 1993, 58, 4758-4763.
(2) (a) Magnus, P.; Lacour, J.; Coldham, I.; Mugrage, B.; Bauta, W. B.
Tetrahedron 1995, 51, 11087-11110. (b) Trost, B. M. Angew. Chem., Int.
Ed. 1989, 28, 1173-1192.
(3) Trost, B. M.; Van Vranken, D. L. J. Am. Chem. Soc. 1993, 115,
4
44-458.
(4) Aminoallylsilanes: (a) Franciotti, M.; Mordini, A.; Taddei, M. Synlett
1
992, 137-138. Aminoepoxides: (b) Luly, J. R.; Dellaria, J. F.; Plattner,
J. J.; Soderquist, J. L.; Yi, N. J. Org. Chem. 1987, 52, 1487-1492. (c)
Romeo, S.; Rich, D. H. Tetrahedron Lett. 1993, 34, 7187-7190. (d) Albeck,
A.; Persky, R. J. Org. Chem. 1994, 59, 653-657. (e) Branat, J.; Kvarnstr o¨ m,
I.; Classon, B.; Samuelson, B.; Nilroth, U.; Danielson, H.; Karl e´ n, A.;
Halberg, A. Tetrahedron Lett. 1997, 38, 3483-3486. Iodocyclocarbam-
ates: (f) Kobayashi, S.; Isobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25,
(8) To see some examples by asymmetric nitrene insertion reaction: (a)
N a¨ geli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; M u¨ ller, P.
HelV. Chim. Acta 1997, 80, 1087-1105. Based on the ene reaction: (b)
Takada, H.; Nishibayashi, Y.; Ohe, K.; Uemura, S.; Baird, C. P.; Sparey,
T. J.; Taylor, P. C. J. Org. Chem. 1997, 62, 6512-6518. (c) Kurose, N.;
Takahashi, T.; Koizumi, T. J. Org. Chem. 1996, 61, 2932-2933. (d) Braun,
H.; Felber, H.; Kresse, G.; Ritter, A.; Schmidtchen, F. P.; Schneider, A.
Tetrahedron 1991, 47, 3313-3328.
5
2
079-5082. Isoxazolines: (g) Nishi, T.; Moreisawa, Y. Heterocycles 1989,
9, 1835-1842.
(5) Akutagawa, S.; Tani, K. In Catalytic Asymmetric Synthesis, 2nd ed.;
(
Ojima, I., Ed.; Wiley: Weinheim, Germany, 2000; p 145.
(9) To see two reviews of olefination of R-aminoaldehydes: (a) Reetz,
M. T. Chem. ReV. 1999, 99, 1121-1162. (b) Wei, Z.-Y.; Knaus, E. E.
Synthesis 1994, 1463-1465.
(
6) For see a review: Johannsen, M.; Jørgensen, K. A. Chem. ReV. 1998,
9
8, 1689-1708.
1
0.1021/ol0529602 CCC: $33.50
© 2006 American Chemical Society
Published on Web 12/30/2005