COMMUNICATIONS
for this site are in good agreement with the values of 2.179 and
6
The spectrum also contains a narrow (40 G peak ± peak)
149171 (1) and CCDC-149172 (2). Copies of the data can be obtained free
of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ,
UK (fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
05.5 MHz, respectively, for [Cu(pc)].[
23]
feature that occurs at g 2.04 and shows no resolved Cu (or
N) hyperfine splittings. Given the structure, this must
correspond to the perpendicular resonance for the magneti-
Received: September 19, 2000 [Z15824]
cally inequivalent molecule of 2. The observed value of g
?
[
1] J. A. Thompson, K. Murata, R. Durcharne, M. Poirier, B. M. Hoffman,
[
23]
2
.04 is in agreement with that of 2.05 for [Cu(pc)]. This line
Phys. Rev. B 1999, 60, 523 ± 529.
is substantially narrower than that of a Cu(pc) g feature. We
[2] J. A. Thompson, K. Murata, D. C. Miller, J. L. Stanton, W. E.
?
Broderick, B. M. Hoffman, J. A. Ibers, Inorg. Chem. 1993, 32, 3546 ±
attribute the decrease in line width in 2 to inter-ion exchange
3
553.
[
24]
effects in this magnetically concentrated crystal.
These measurements show that both the g tensor and the
[3] T. Inabe, S. Nakamura, W.-B. Liang, T. J. Marks, R. L. Burton, C. R.
Kannewurf, K.-ichi Imaeda, J. Am. Chem. Soc. 1985, 107, 7224 ± 7226.
6
3,65
Cu hyperfine interactions are negligibly perturbed when
[4] S. M. Palmer, J. L. Stanton, J. Martinsen, M. Y. Ogawa, W. B. Heuer,
S. E. Van Wallendael, B. M. Hoffman, J. A. Ibers, Mol. Cryst. Liq.
Cryst. 1985, 125, 1 ± 11.
2
the Cu(pc) unit is doubly oxidized to [Cu(pc)] . Thus, the
Cu ion remains in its d electronic configuration. The
similarities in the g values of [Cu(pc)] and Cu(pc) further
II
9
[
[
5] J. Metz, M. Hanack, J. Am. Chem. Soc. 1983, 105, 828 ± 830.
6] S. M. Palmer, J. L. Stanton, N. K. Jaggi, B. M. Hoffman, J. A. Ibers,
L. H. Schwartz, Inorg. Chem. 1985, 24, 2040 ± 2046.
2
k
show that the energy separation between the ground state
d
x2-y2
and the dxy orbitals are essentially the same in these two
[7] H. B. Dunford, Heme Peroxidases, Wiley, New York, 1999.
[
8] J. Janczak, M. Razik, R. Kubiak, Acta Crystallogr. Sect. C 1999, 55,
59 ± 361.
9] F. Gingl, J. Strähle, Z. Naturforsch. B 1988, 43, 445 ± 448.
compounds.
3
In summary, structural and EPR studies show that [Cu-
[
(pc)(ReO )] (1) contains Cu(pc) units singly oxidized at the
4
[10] V. Börschel, J. Strähle, Z. Naturforsch. B 1984, 39, 1664 ± 1667.
[11] K. Ukei, Acta Crystallogr. Sect. B 1982, 38, 1288 ± 1290.
[12] D. Lexa, M. Reix, J. Chim. Phys. Phys. Chim. Biol. 1974, 71, 511 ± 516.
13] M. E. Meray, A. Louati, J. Simon, A. Giraudeau, M. Gross, T.
Malinski, K. M. Kadish, Inorg. Chem. 1984, 23, 2606 ± 2609.
14] E. Ough, T. Nyokong, K. A. M. Creber, M. J. Stillman, Inorg. Chem.
1988, 27, 2724 ± 2732.
ring to produce the spin triplet formed by ferromagnetic
9
II
coupling between the d Cu ion and a p radical delocalized
on the ring. Compound 2, [Cu(pc)(ReO ) ] which contains
[
[
[
4
2
Cu(pc)]2 moieties, also retains the paramagnetic Cu center,
II
[
0
and thus contains a diamagnetic, doubly oxidized pc ring.
15] J. A. Ibers, L. J. Pace, J. Martinsen, B. M. Hoffman, Struct. Bonding
(
Berlin) 1982, 50, 1 ± 55.
Experimental Section
[16] B. S. Erler, W. F. Scholz, Y. J. Lee, W. R. Scheidt, C. A. Reed, J. Am.
Chem. Soc. 1987, 109, 2644 ± 2652.
Single crystals of both 1 and 2 grew at the anode of an electrolytic cell that
[17] M. Losada, J. Mol. Catal. 1975/76, 1, 245 ± 264.
[18] W. F. Scholz, C. A. Reed, Y. J. Lee, W. R. Scheidt, G. Lang, J. Am.
Chem. Soc. 1982, 104, 6791 ± 6793.
[19] P. Gans, G. Buisson, E. Du e e, J.-C. Marchon, B. S. Erler, W. F. Scholz,
C. A. Reed, J. Am. Chem. Soc. 1986, 108, 1223 ± 1234.
[20] W. A. Yager, E. Wasserman, R. M. R. Cramer, J. Chem. Phys. 1962, 37,
1148.
[21] H. Fujii, Inorg. Chem. 1993, 32, 875 ± 879.
[22] S. Konishi, M. Hoshino, M. Imamura, J. Am. Chem. Soc. 1982, 104,
2057 ± 2059.
[23] S. E. Harrison, J. M. Assour, J. Chem. Phys. 1964, 40, 365 ± 370.
[24] K. W. Plumlee, B. M. Hoffman, J. A. Ibers, Z. G. Soos, J. Chem. Phys.
1975, 63, 1926 ± 1942.
[25] A. Wolberg, J. Manassen, J. Am. Chem. Soc. 1970, 92, 2982 ± 2991.
[26] SMART Version 5.054 Data Collection and SAINT-Plus Version
consisted of two compartments separated by a glass frit. The [Cu(pc)]
[
2]
starting material was synthesized by metallation of very pure H
CuCl ´ xH O (99.9999%, dehydrated), followed by repeated sublimation.
The electrolytic cell was protected from light, kept purged with dry N , and
maintained at 120(5)8C. Each half-cell contained a solution of 1-chloro-
naphthalene (20 mL) that was 0.013m in [N(n-Bu) ][ReO ]; the solution in
the anode compartment was saturated with [Cu(pc)] ([Cu(pc)] < 10 m;
2
(pc) with
2
2
2
4
4
�
3
1
[25]
E
ox 0.98 V versus SCE ). A 2.0 mA current was passed through the cell
by platinum electrodes for three weeks, during which time the initially blue
solution turned green. A few dark-purple crystals of 1 and several dark-red
crystals of 2 grew on the anode in about a 1:10 ratio. These crystals were
separated manually. The Cu:Re ratio of each crystal was determined by
energy dispersive spectroscopy to provide a confirmation of the visual
identification. Both compounds are air and light stable.
6
.02A Data Processing Software for the SMART System. (Bruker
General crystallographic details: Bruker Smart 1000 CCD diffractome-
[
26]
Analytical X-Ray Instruments, Inc., Madison, WI, USA, 2000).
27] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467 ± 473.
[28] G. M. Sheldrick SHELXTL DOS/Windows/NT Version 5.10. (Bruker
ter,
MoKa radiation (l 0.71073 ), w-scans, T 153 K. For 1, two
[
hemispheres were collected, one at 2q � 288, the other at 2q � 758. The
[27]
structures were solved by direct methods and refined with the program
[28]
Analytical X-Ray Instruments, Inc., Madison, WI, USA, 1999).
SHELXTL. Face-indexed absorption corrections were performed in the
program XPREP.[ All non-hydrogen atoms were refined anisotropically,
and hydrogen atoms were allowed to ride on their respective carbon atoms.
28]
Crystal structure analysis of 1: C32
H
16CuN
8
O
4
Re, dark purple prism, 0.42 Â
0
2
2
1
0
.25 Â 0.24 mm, monoclinic, P2
1
/c, a 20.455(4) b 11.947(2), c
3
7.327(6) , b 126.86(3)8, V 5343.4(19) , T 153 K, Z 8, 1calcd
�
3
.054 gcm , 2qmax 56.68, 32531 reflections measured, 12544 unique,
�
1
0343 observed with I > 2s(I). m 53.8 cm , min/max transmission 0.19/
.35. R 0.127 (all data). Crystal structure analysis of 2:
0.064, wR
Re
, Deep red polyhedron, 0.24 Â 0.37 Â 0.49 mm, mono-
1
2
C
32
H
16CuN
8
O
8
2
clinic, P2
1
/c, a 8.9825(18), b 9.3147(19), c 17.712(4) , b 95.96(3)8,
3
� 3
V 1474.0(5) , T 153 K, Z 2, 1calcd 2.425 gcm , 2qmax 56.548, 9208
reflections measured, 3541 unique, 3223 observed with I > 2s(I). m
�
1
89.8 cm
,
min/max transmission 0.063/0.18.
R
1
0.0550, wR 0.128
2
(
all data). Crystallographic data (excluding structure factors) for the
structures reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC-
246
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4001-0246 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 1