Journal of the American Chemical Society
Page 6 of 12
(
(
9) Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.;
reversible electron acceptor in a TiO
for CO photoreduction. J. Am. Chem. Soc. 2017, 139, 1226.
(26) Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.;
Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C.;
Yu, T. Y.; Chung, P. W.; Lin, M. C.; Chen, L. C.; Chen, K.
2
–Re catalyst system
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photo-
reduction on nanosheets: fundamentals and challenges.
Angew. Chem. Int. Ed.2018, 57, 7610-7627.
2
10) Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.;
Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J.; Kim, J.
G.; Meng, X. J.; Xiao, F. S. Selective hydrogenation of
CO2 to ethanol over cobalt catalysts. Angew. Chem. Int.
Ed. 2018, 57, 6104-6108.
2
H. Carbon-doped SnS nanostructure as a high-efficiency
solar fuel catalyst under visible light. Nat. Comm. 2018, 9,
169.
(27) Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.;
Yi, Z. G. Photocatalytic oxidation of methane over silver
decorated zinc oxide nanocatalysts. Nat. Comm. 2016, 7,
12273.
(11) Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z.; Lao, T.Z.; Chen,
H.; Wang, Y. W.; Zheng, M. L.; Zhu, X. S.; Zhang, J. F. W.
H.; Si, C.; Ma, R.; Zeng, J. Synergetic interaction between
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
neighbouring
hydrogenation. Nat. Nanotech. 2018, 13, 411-417.
platinum
monomers
in
CO
2
(28) Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The
2
role of reticular chemistry in the design of CO reduction
catalysts. Nat. Mater. 2018, 17, 301-307.
(
12) Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom
(Pd/Pt) supported on graphitic carbon nitride as an
efficient photocatalyst for visible-light reduction of
carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292-6297.
13) Katte, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu,
(29) Liu, C.; Colon, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D.
G. Water splitting–biosynthetic system with CO
2
reduction efficiencies exceeding photosynthesis. Science
2016, 352, 1210.
(
(
(
P. Active sites for CO
2
hydrogenation to methanol on
(30) Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.
A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.;
Yaghi, O. M. Plasmon-enhanced photocatalytic CO2
conversion within Metal-Organic Frameworks under
visible light. J. Am. Chem. Soc. 2016, 139, 356-362.
(31) Schreier, M.; Curvat, L.; Giordano, F.; Steier, L.; Abate,
A.; Zakeeruddin, S.; Luo, J.; Mayer, M. T.; Gratzel, M.
Cu/ZnO catalysts. Science 2017, 355, 1296-1299.
14) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-
light-driven methane formation from CO
2
with a
molecular iron catalyst. Nature 2017, 548, 74-77.
15) Kajiwara, T.; Fujii, M.; Tsujimoto, M.; Kobayashi, K.;
Higuchi, M.; Tanaka, K.; Kitagawa, S. Photochemical
reduction of low concentrations of CO
2
in a porous
Efficient photosynthesis of carbon monoxide from CO
2
using perovskite photovoltaics. Nat. Commun. 2015, 6,
7326.
coordination polymer with a ruthenium(II)–CO complex.
Angew. Chem. Int. Ed. 2016, 55, 2697-2700.
(
(
16) Chen, Y.; Ji, G. P.; Guo, S. E.; Yu, B.; Zhao, Y. F.; Wu, Y. Y.;
Zhang, H. Y.; Liu, Z. H.; Han, B. X.; Liu, Z. M. Visible-
(32) Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E.
2
Selective photocatalytic CO reduction in water through
light-driven conversion of CO
ionic liquid and a conjugated polymer. Green Chem. 2017,
9, 5777-5781.
2
from air to CO using an
anchoring of molecular Ni catalyst on CdS
a
nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217.
1
(33) Sun, W. M.; Yeung, M. T.; Lech, A. T.; Lin, C. W.; Lee, C.;
Li, T. Q.; Duan, X. F.; Zhou, J.; Kaner, R. B. High surface
17) Guan, Y. B.; Xia, M.; Marchetti, A.; Wang, X. H.; Cao, W.
C.; Guan, H. X.; Kong, X. Q. Photocatalytic reduction of
CO2 from simulated flue gas with colored anatase. Catal.
2018, 8, 78.
area tunnels in hexagonal WO
4838.
3
. Nano Lett. 2015, 15, 4834-
(34) Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.;
Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y.; Jaramillo, T.
F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen
reduction to hydrogen peroxide catalysed by oxidized
carbon materials. Nat. Catal. 2018, 1, 156-162.
(35) Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.;
Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y.
C.; Xia, M. K.; Li, Y.; Wang, S. H.; Jia, J.; Qiu, C. Y.; Qian,
C. X.; Kherani, N. P.; He, L.; Zhang, X. H.; Ozin, G. A.
Photocatalytic hydrogenation of carbon dioxide with
high selectivity to methanol at atmospheric pressure.
Joule 2018, 2, 1369-1381.
(36) Ye, M. H.; Wang, X.; Liu, E. Z.; Ye, J. H.; Wang, D. F.
Boosting the photocatalytic activity of P25 for carbon
dioxide reduction by using a surface-alkalinized titanium
carbide MXene as cocatalyst. Chemsuschem. 2018, 11,
1606-1611.
2
(18) Gallagher, J. CO reduction: Boron in its element. Nat.
Energy 2017, 2, 17081.
(
(
(
19) Zhang, X.; Li, X. Q.; Zhang, D.; Su, N. Q.; Yang, W. T.;
Everitt, H. O.; Liu, J. Product selectivity in plasmonic
photocatalysis for carbon dioxide hydrogenation. Nat.
Comm. 2017, 8, 14542.
20) Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H.
X.; Qi, Z. M.; Zhu, J. F.; Xie, Y. Infrared light-driven CO
overall splitting at room temperature. Joule 2018, 2, 1004-
016.
2
1
21) Wang, X. N.; Wang, F. L.; Sang, Y. H.; Liu, H. Full-
spectrum solar-light-activated photocatalysts for light-
chemical energy conversion. Adv. Energy Mater. 2017, 7,
1
700473.
(22) Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed,
A. R. Harnessing Vis-NIR broad spectrum for
photocatalytic CO2 reduction over carbon quantum
(37) Chen, X. Y.; Zhou, Y.; Liu, Q.; Li, Z. D.; Liu, J. G.; Zou, Z.
dots-decorated ultrathin Bi
017, 10, 1720-1731.
2
WO
6
nanosheets. Nano Res.
G. Ultrathin, single-crystal WO
dimensional oriented attachment toward enhanced
photocatalystic reduction of CO into hydrocarbon fuels
3
nanosheets by two-
2
(
23) Chen, Y.; Jia, G.; Hu, Y. F.; Fan, G. Z.; Tsang, Y. H.; Li, Z.
2
S.; Zou, Z. G. Two-dimensional nanomaterials for
photocatalytic CO reduction to solar fuels. Sustainable
2
Energy Fuels 2017, 1, 1875-1898.
under visible light. ACS Appl. Mater. Interfaces 2012, 4,
3372-3377.
(38) Adachi, K.; T Asahi, T. Activation of plasmons and
polarons in solar control cesium tungsten bronze and
reduced tungsten oxide nanoparticles. J. Mater. Res. 2012,
27, 965-970.
(39) Salje, E.; Guttler, B. Anderson transition and
intermediate polaron formation in WO3-x Transport
(
(
24) Lingampalli, S. R.; Ayyub, M. M.; Rao, C. N. R. Recent
progress in the photocatalytic reduction of carbon
dioxide. ACS Omega 2017, 2, 2740-2748.
25) Abdellah, M.; El-Zohry, A. M.; Antila, L. J.; Windle, C. D.;
Reisner, E.; Hammarström, L. Time-resolved IR
spectroscopy reveals a mechanism with TiO
2
as a
ACS Paragon Plus Environment