10.1002/anie.202105570
Angewandte Chemie International Edition
RESEARCH ARTICLE
reduced rate of recombination of trapped charges in FAT to the
intrinsic spatial separation of electrons and holes and expect
that the recombination of shorter-lived reactive charges will also
be reduced.
grant (291482). J.T. thanks the Leverhulme Trust (RPG-2012-
582, RPG-2017-122), EPSRC (EP/S018204/2) and Royal
Society-Newton Advanced Fellowship grants (NA170422). We
also acknowledge Mr. Linzhong Wu for his assistance on PL
measurements and Dr. Markus Döblinger for his expertise on
HRTEM.
We do not observe an increased trapped electron lifetime in
CD/FAT compared to FAT on the timescales monitored, which is
informative considering the changes in charge carrier densities.
A four-fold increase in the electron lifetime was indeed observed
for CD/CN vs CN.[6a] While the origin of the distinct behaviour of
FAT and CN when forming a junction with CD is unclear, it is
likely that the intrinsic charge separation in FAT mitigates the
impact of CD on the recombination of trapped charges. The
increased signal of trapped electrons at 3 µs in CD/FAT vs FAT
indicates reduced recombination in the sub-microsecond
timescale, likely relevant to the reactive charges. We, therefore,
attribute the improved photocatalytic efficiency in CD/FAT vs
FAT to the interfacial transfer of reactive holes to CD prior to
deep trapping and reduced sub-microsecond charge carrier
recombination. The TAS measurements lead us to conclude that
holes are the dominant trapped species in FAT while electrons
are the dominant trapped species in CN (Figures 4 and b).
When CD extracts holes from FAT, hole accumulation in FAT is
not severe in the CD/FAT composite under irradiation and
charge recombination remains low. On the other hand, although
the CD extracts holes from CN, a higher density of electrons still
accumulate in CN when the CD/CN is irradiated and results in
higher rates of recombination compared to CD/FAT.
Keywords: Carbon dioxide fixation • Photocatalysis • Time-
resolved spectroscopy • Carbon dots • Charge Trapping
References:
[1]
[2]
W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607-4626.
a) J. E. Hansen, Environ. Res. Lett. 2007, 2, 024002; b) S.
I. Seneviratne, M. G. Donat, A. J. Pitman, R. Knutti, R. L.
Wilby, Nature 2016, 529, 477; c) M. Forkel, N. Carvalhais,
C. Rödenbeck, R. Keeling, M. Heimann, K. Thonicke, S.
Zaehle, M. Reichstein, Science 2016, 351, 696-699; d) L.
Wang, J. Wan, Y. Zhao, N. Yang, D. Wang, J. Am. Chem.
Soc. 2019, 141, 2238-2241; e) C. Bie, B. Zhu, F. Xu, L.
Zhang, J. Yu, Adv. Mater. 2019, 31, 1902868; f) L.-Y. Wu,
Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang,
T.-B. Lu, Angew. Chem. Int. Ed. 2019, 58, 9491-9495; g)
W.-P. Chen, P.-Q. Liao, P.-B. Jin, L. Zhang, B.-K. Ling, S.-
C. Wang, Y.-T. Chan, X.-M. Chen, Y.-Z. Zheng, J. Am.
Chem. Soc. 2020, 142, 4663-4670.
[3]
[4]
E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am.
Chem. Soc. 2008, 130, 6342-6344.
R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M.
Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani, K.
Maeda, Angew. Chem. Int. Ed. 2017, 129, 4945-4949.
H. Shi, G. Chen, C. Zhang, Z. Zou, ACS Catal. 2014, 4,
3637-3643.
a) Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C.
Jiang, J. F. Thompson, K. B. Mustafa, S. A. Shevlin, J. R.
Durrant, Z. Guo, J. Tang, Nat. Commun. 2020, 11, 2531;
[5]
[6]
Conclusion
In summary, for the first time, we have demonstrated a unique
strategy to improve the performance of CO2 reduction to
methanol by altering the terminal and linker groups in carbon
nitride and forming a junction with hole-accepting carbon dots.
Replacing some N atoms in CN to O atoms in FAT resulted in a
lower density of trapped electrons and a higher intensity of
trapped holes following photoexcitation, as determined by TAS.
Spectroscopic investigations also showed that that CD could
extract holes from FAT on the sub-microsecond timescale,
before deep trapping can occur on FAT, to retain the reactivity of
holes and increase the number of effective electrons, thus
favouring the 6-electron reduction reaction of CO2 fixation to
methanol. The CD/FAT exhibited dramatically enhanced visible-
light-driven methanol production from CO2 by water compared to
CD/CN. An IQY of 5.9% was measured at 420 nm for CD/FAT,
which is nearly three times higher than that reported for CD/CN.
The performance is also found to be dependent on the synthetic
microwave power related to the crystallinity of the CD, its loading
amount, and the pH. Thus, this work not only paves a
sustainable way to close the carbon cycle but also stimulates the
photophysical understandings and structural design of polymeric
semiconductors.
b) M. Halmann, Nature 1978, 275, 115; c) M. Aresta, A.
Dibenedetto, Dalton Trans. 2007, 2975-2992; d) T. Inoue,
A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637.
a) G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A.
Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed.
2019, 131, 3471-3475; b) D. J. Martin, K. Qiu, S. A.
Shevlin, A. D. Handoko, X. Chen, Z. Guo, J. Tang, Angew.
Chem. Int. Ed. 2014, 53, 9240-9245; c) D. J. Martin, P. J.
T. Reardon, S. J. Moniz, J. Tang, J. Am. Chem. Soc. 2014,
136, 12568-12571; d) X. Wang, K. Maeda, A. Thomas, K.
Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti,
Nat. Mater. 2009, 8, 76-80.
[7]
[8]
[9]
Y. Wang, A. Vogel, M. Sachs, R. S. Sprick, L. Wilbraham,
S. J. A. Moniz, R. Godin, M. A. Zwijnenburg, J. R. Durrant,
A. I. Cooper, J. Tang, Nat. Energy 2019, 4, 746-760.
a) R. Godin, Y. Wang, M. A. Zwijnenburg, J. Tang, J. R.
Durrant, J. Am. Chem. Soc. 2017; b) Y. Li, Z. Wang, T. Xia,
H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L. Song, J. Zhu,
J. Jiang, Y. Xiong, Adv. Mater. 2016, 28, 6959-6965.
a) V. W.-h. Lau, I. Moudrakovski, T. Botari, S. Weinberger,
M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch,
Nat. Commun. 2016, 7; b) R. Godin, Y. Wang, M. A.
Zwijnenburg, J. Tang, J. R. Durrant, J. Am. Chem. Soc.
2017, 139, 5216-5224; c) V. W.-h. Lau, V. W.-z. Yu, F.
Ehrat, T. Botari, I. Moudrakovski, T. Simon, V. Duppel, E.
Medina, J. Stolarczyk, J. Feldmann, V. Blum, B. V. Lotsch,
Adv. Energy Mater. 2017, 1602251; d) Y. Wang, M. K.
Bayazit, S. J. A. Moniz, Q. Ruan, C. C. Lau, N.
Martsinovich, J. Tang, Energy Environ. Sci. 2017, 10,
1643-1651.
[10]
Acknowledgements
Y.W. thanks the CSC for Ph.D. funding and Alexander von
Humboldt Foundation for research grant. R.G. thanks NSERC
for operational funding. J.R.D. acknowledge ERC AdG Intersolar
[11]
a) Q. Ruan, W. Luo, J. Xie, Y. Wang, X. Liu, Z. Bai, C. J.
Carmalt, J. Tang, Angew. Chem. Int. Ed. 2017, 56, 8221-
8225; b) M. Li, Y. Wang, P. Tang, N. Xie, Y. Zhao, X. Liu,
5
This article is protected by copyright. All rights reserved.