through intermediates 2-7 (see Tables 1 and 2 and Figures
and 3). There is no doubt in our minds that these readily
available products, being mono-, di-, tri-, and tetradentate
ligands for metals, will be used for syntheses of enantiopure
compounds (EPC) by us and by others.
2
Table 2. Melting Points and Specific Rotations of the TADDOL
Derivatives (for more details and full characterization, see Supporting
Information)
TADDOL
derivative
yielda
[R]Drt
(c in CHCl3)
(from) [%]
mp [°C]
2b
3
72 (1)
(1)
(2)
63d (3)
(2)
135-137
171-172
210-211
198-200
181-183
130-131
68-70
-18.1
-11.1
-58.1
-45.2
-23.0
-36.4
-83.5
-99.9
-73.6
-50.5
+61.1
+108.3
+7.1
(0.4)
(1.0)
(0.2)
(1.0)
(1.2)
(1.2)
(0.7)
(0.9)
(1.2)
(0.7)
(1.2)
(1.2)
(1.1)
(1.0)
(1.0)
(0.6)
(1.0)
(0.6)
(1.0)
(1.1)
(1.0)
(1.2)
Table 1. Derivatives 2-13 of the Parent TADDOL 1
4
5
c
6
7
8
9
0
1
2
3
e
(6)
f
47 (7)
23 (7)
80 (2)
47 (2)
g
97-98
h
1
1
1
1
1
1
1
1
1
1
1
1
1
1
192-193
154-155
138-140
139-140
223-225
200-202
168-169
209-210
182-183
245-246
232-235
155-157
182-185
186-187
TADDOL
i
derivative
X
Y
ref
k
m
l
59 (1)
2
3
4
5
6
7
8
9
0
1
2
3
Cl
Cl
NH2
NH2
NMe2
NMe2
NMe2
NMe2
NHPh
4-tBuPhO
F
OH
Cl
OH
NH2
OH
Cl
10, 13, this paper
10,13
10,13
10,13,16, this paper
10,13
10, this paper
this paper
this paper
this paper
this paper
this paper
this paper
84 (1)
54 (2)
83 (2)
72 (3)
n
n
4a
4b
-2.1
n
5
-65.4
+41.5
+45.5
+37.9
-10.0
+41.0
+18.3
-10.6
p
p
p
q
6a
6b
6c
54 (5)
q
67 (5)
H
q
37 (5)
PhS
OH
OH
OH
F
r
s
7
8
30 (1)
1
1
1
1
t
58 (1)
39
48
u
u
9a
9b
F
a
After purification. b 1 and 2 equiv of P(Ph)3, 3 equiv of CCl4, 2 equiv
of pyridine in CH2Cl2, rt, 3 d (see footnote 20). c 3 and NH3 (neat), 30
equiv of NH4Cl, autoclave, 85 °C, 2 d (see footnote 21). d In addition, 20%
product of cyclization, see compound 7 in ref 10. e Fully characterized,
Besides the linear (17) and cyclic (crown ether17 18, see
Figures 3 and 4) triethylene glycol derivatives and the
oxazolines18 19 (Figure 3), all other new compounds arise
including X-ray structure. f 7 and 7 equiv of Ph PH, THF reflux, 2 d. g 7
2
and PhSH (neat), 60 °C, 1 d. h 2 and PhNH2 in CH2Cl2, rt, 5 d. i 2 and 5
equiv of 4-tBu-C6H4OH in CH2Cl2, 2 equiv of NEt3, reflux, 12 h. k 1 and
from mono- and disubstitutions of the TADDOL OH group-
(
s). The key intermediates in these transformations are the
previously described C -symmetrical chloro (2) and amino
alcohols (4, 6) and the C -symmetrical dichloride (3) and
diamine (5). We have now greatly improved the transforma-
1
equiv of diethylaminosulfur trifluoride (DAST) in CH2Cl2, -78 f 0 °C,
1
X-ray structure, see Figure 4. 13 as side product (12%). m 1 and 2.5 equiv
of DAST, CH2Cl2, -78 f 0 °C. n 2 or 3 and 10 equiv of of amine in
CH2Cl2, rt, 3-5 d. p 5 and 2 equiv of aldehyde in toluene, reflux,
p-toluenesulfonic acid (PTSA), 3-7 d. In addition, the monocondensation
product is isolated. 1 and triethylenglycol ditosylate in THF, 2 equiv of
l
2
1
9
tion of 1 to the monochloride 2 by using the Appel reaction
q
2
0
which does not proceed to the dichloride at all, and we
found a way around the intermediacy of a diazide by going
r
13
KOtBu, reflux, 9 h. s In addition, 21% of a side product. t 1 and triethyl-
directly from the dichloride 3 to the diamine 5 in NH
4
Cl-
englycol ditosylate in THF, 4 equiv of NaH, reflux, 16 h, X-ray structure,
see Figure 4. u Half-ester of (R,R)-tartaric acid acetonide and 3 equiv of
PhMgBr, then condensation with (R)- or (S)-2-amino-2-phenylethanol.
buffered ammonia (heating the neat components in an
2
1
autoclave), see Tables 1 and 2. Thus, the mono- and
diamines 4-6 are now readily accessible in three simple steps
from commercial tartrate acetonide. One additional step, the
(
10) Seebach, D.; Hayakawa, M.; Sakaki, J.-i.; Schweizer, W. B.
Tetrahedron 1993, 49, 1711.
11) Sakaki, J.-i.; Schweizer, W. B.; Seebach, D. HelV. Chim. Acta 1993,
6, 2654.
12) Seebach, D.; Devaquet, E.; Ernst, A.; Hayakawa, M.; K u¨ hnle, F.
N. M.; Schweizer, W. B.; Weber, B. HelV. Chim. Acta 1995, 78, 1636.
13) Seebach, D.; Beck, A. K.; Hayakawa, M.; Jaeschke, G.; K u¨ hnle, F.
(
7
(
(
N. M.; N a¨ geli, I.; Pinkerton, A. B.; Rheiner, P. B.; Duthaler, R. O.; Rothe,
P. M.; Weigand, W.; W u¨ nsch, R.; Dick, S.; Nesper, R.; W o¨ rle, M.; Gramlich,
V. Bull. Soc. Chim. Fr. 1997, 134, 315.
(
14) Seebach, D.; Jaeschke, G.; Pichota, A.; Audergon, L. HelV Chim.
Acta 1997, 80, 2515.
(
15) Heldmann, D. K.; Seebach, D. HelV. Chim. Acta 1999, 82, in press.
Figure 2.
(16) Rothe, P. M. Ph.D. Dissertation, University of Basel, Switzerland,
994; Bichsel, H.-U. Diplomarbeit, ETH Z u¨ rich, 1998.
1
56
Org. Lett., Vol. 1, No. 1, 1999