Paper
Dalton Transactions
J. Am. Chem. Soc., 2012, 134, 8810; X. Dong, Y.-M. Zhao and
J. Sun, Synlett, 2013, 24, 1221; F. Li, Z. Wu and J. Wang,
2011, 696, 780; M. K. Whittlesey and E. Peris, ACS Catal.,
2014, 4, 3152.
Angew. Chem., Int. Ed., 2015, 54, 656; X. Dong, W. Yang, 14 C. J. E. Davies, J. P. Lowe, M. F. Mahon, R. C. Poulten and
W. Hu and J. Sun, Angew. Chem., Int. Ed., 2015, 54, 660. M. K. Whittlesey, Organometallics, 2013, 32, 4927.
J. J. Song, Z. Tan, J. T. Reeves, F. Gallou, N. K. Yee and 15 C D needs to be avoided because of facile H/D exchange
3
6
6
C. H. Senanayake, Org. Lett., 2005, 7, 2193; L.-T. Shen,
P.-L. Shao and S. Ye, Adv. Synth. Catal., 2011, 354, 1943; 16 For a discussion of C–F versus C–H bond activation, see:
with 1. See ref. 14.
X. Dong and J. Sun, Org. Lett., 2014, 16, 2450. See also,
reports on the use of PhenoFluor and PhenFluorMix for
S. A. Johnson, J. A. Hatnean and M. E. Doster, Prog. Inorg.
Chem., 2012, 57, 255.
C–F bond formation. P. Tang, W. Wang and T. Ritter, J. Am. 17 M. K. Whittlesey, R. N. Perutz, B. Greener and
Chem. Soc., 2011, 133, 11482; T. Fujimoto and T. Ritter,
Org. Lett., 2015, 17, 544.
H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2010, 132, 2860;
P. Wheeler, H. U. Vora and T. Rovis, Chem. Sci., 2013, 4,
M. H. Moore, Chem. Commun, 1997, 187.
18 R. G. Ball, B. R. James, J. Trotter, D. K. W. Wang and
K. R. Dixon, J. Chem. Soc., Chem. Commun., 1979, 460;
J. Figueira, M. G. Jardim, J. Rodrigues, A. Valkonen and
K. Rissanen, Inorg. Chem. Commun., 2013, 29, 123;
M. V. Câmpain, R. N. Perutz, B. Procacci, R. J. Thatcher,
O. Torres and A. C. Whitwood, J. Am. Chem. Soc., 2012, 134,
3480.
4
5
1
674; M. Kajjout, M. Smietana, J. Leroy and C. Rolando,
Tetrahedron Lett., 2013, 54, 1658.
J. A. Akana, K. X. Bhattacharyya, P. Müller and J. P. Sadighi,
J. Am. Chem. Soc., 2007, 129, 7736; B. C. Gorske,
C. T. Mbofana and S. J. Miller, Org. Lett., 2009, 11, 4318; 19 J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 2605.
H. Lv, J.-H. Zhan, Y.-B. Cai, Y. Yu, B. Wang and J.-L. Zhang, 20 D. A. J. Harding, E. G. Hope, G. A. Solan and J. Fawcett,
J. Am. Chem. Soc., 2012, 134, 16216; C. M. Wys, B. K. Tate,
J. Bacsa, M. Wieliczko and J. P. Sadighi, Polyhedron, 2014,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63,
m383; P. Barthazy, R. M. Stoop, M. Wörle, A. Togni and
A. Mezzetti, Organometallics, 2000, 19, 2844.
8
4, 87.
6
7
F. Nahra, S. R. Patrick, D. Bello, M. Brill, A. Obled, 21 S. A. Macgregor, D. C. Roe, W. J. Marshall, K. M. Bloch,
D. B. Cordes, A. M. Z. Slawin, D. O’Hagan and S. P. Nolan,
ChemCatChem, 2015, 7, 240.
V. I. Bakhmutov and V. V. Grushin, J. Am. Chem. Soc., 2005,
127, 15304; S. P. Reade, D. Nama, M. F. Mahon,
P. S. Pregosin and M. K. Whittlesey, Organometallics, 2007,
26, 3484.
Trifluoromethylation reactions are also possible, but are
stoichiometric: G. G. Dubinina, H. Furutachi and
D. A. Vicic, J. Am. Chem. Soc., 2008, 130, 8600; 22 J. Huang, E. D. Stevens, S. P. Nolan and J. L. Petersen,
G. G. Dubinina, J. Ogikubo and D. A. Vicic, Organometallics,
008, 27, 6233.
T. Schaub, M. Backes and U. Radius, J. Am. Chem. Soc.,
J. Am. Chem. Soc., 1999, 121, 2674.
23 S. Burling, E. Mas-Marzá, J. E. V. Valpuesta, M. F. Mahon
and M. K. Whittlesey, Organometallics, 2009, 28, 6676.
2
8
9
2
006, 128, 15964; Z. Mo, Q. Zhang and L. Deng, Organo- 24 W. Baratta, E. Herdtweck and P. Rigo, Angew. Chem., Int.
metallics, 2012, 31, 6518. For reviews of the field, see:
A. D. Sun and J. A. Love, Dalton Trans., 2010, 39, 10362;
T. Ahrens, J. Kohlmann, M. Ahrens and T. Braun, Chem.
Rev., 2015, 115, 931.
Ed., 1999, 38, 1629; W. Baratta, C. Mealli, E. Herdtweck,
A. Ienco, S. A. Mason and P. Rigo, J. Am. Chem. Soc., 2004,
126, 5549.
25 N. A. Jasim and R. N. Perutz, J. Am. Chem. Soc., 2000, 122,
8685; D. C. Roe, W. J. Marshall, F. Davidson, P. D. Soper
and V. V. Grushin, Organometallics, 2000, 19, 4575;
N. A. Jasim, R. N. Perutz, S. P. Foxon and P. H. Walton,
J. Chem. Soc., Dalton Trans., 2001, 1676; J. Vicente,
J. Gil-Rubio, D. Bautista, A. Sironi and N. Masciocchi,
Inorg. Chem., 2004, 43, 5665; T. Vergote, F. Nahra, A. Welle,
M. Luhmer, J. Wouters, N. Mager, O. Riant and
T. Leyssens, Chem. – Eur. J., 2012, 18, 793; C. Segarra,
E. Mas-Marzá, J. P. Lowe, M. F. Mahon, R. C. Poulten and
M. K. Whittlesey, Organometallics, 2012, 31, 8584;
N. Bramananthan, M. Carmona, J. P. Lowe, M. F. Mahon,
R. C. Poulten and M. K. Whittlesey, Organometallics, 2014,
33, 1986; B. J. Truscott, F. Nahra, A. M. Z. Slawin,
D. B. Cordes and S. P. Nolan, Chem. Commun., 2015, 51, 62.
26 M. C. Pilon and V. V. Grushin, Organometallics, 1998, 17,
1774; D. Noveski, T. Braun and S. Krückemeier, J. Fluorine
Chem., 2004, 125, 959; L. M. Martínez-Prieto, C. Melero,
D. del Río, P. Palma, J. Cámpora and E. Álvarez, Organo-
metallics, 2012, 31, 1425.
S. Kuhl, R. Schneider and Y. Fort, Adv. Synth. Catal., 2003,
3
45, 341; P. Fischer, K. Götz, A. Eichhorn and U. Radius,
Organometallics, 2012, 31, 1374; S. Sabater, J. A. Mata and
E. Peris, Nat. Commun., 2013, 4, 2553; L. Schwartsburd,
M. F. Mahon, R. C. Poulten, M. R. Warren and
M. K. Whittlesey, Organometallics, 2014, 33, 6165;
S. Sabater, J. A. Mata and E. Peris, Organometallics, 2015,
3
4, 1186.
1
0 S. P. Reade, M. F. Mahon and M. K. Whittlesey, J. Am.
Chem. Soc., 2009, 131, 1847; J. A. Panetier, S. A. Macgregor
and M. K. Whittlesey, Angew. Chem., Int. Ed., 2011, 50,
2
783; S. A. Macgregor, D. McKay, J. A. Panetier and
M. K. Whittlesey, Dalton Trans., 2013, 42, 7386.
1 D. McKay, I. M. Riddlestone, S. A. Macgregor, M. F. Mahon
and M. K. Whittlesey, ACS Catal., 2015, 5, 776.
2 S. P. Reade, A. L. Acton, M. F. Mahon, T. A. Martin and
M. K. Whittlesey, Eur. J. Inorg. Chem., 2009, 1774.
3 L. M. Guard, A. E. W. Ledger, S. P. Reade, C. E. Ellul,
M. F. Mahon and M. K. Whittlesey, J. Organomet. Chem.,
1
1
1
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015