unique detection strategy may provide a perspective to design
new selenide probes for NO sensing.
This work is supported by grants from the NSF of China (Nos.
20935005, 90813032, and 20875092), National Basic Research
Program of China (Nos. 2010CB933502, and 2011CB935800),
and the Chinese Academy of Science (KJCX2-EW-N06-01).
We thank Prof. W. Thiemann for helpful discussions on the
manuscript.
Fig. 4 Fluorescence images (top) and corresponding differential inter-
ference contrast (DIC) images (bottom) of RBSe-loaded Hela cells.
The RBSe-loaded Hela cells were incubated in the absence (A, C) and
presence (B, D) of 20 mM NOC 5 for 30 min (A, B) and 60 min
(C, D), respectively. In image (E), the RBSe-loaded Hela cells were
pre-treated with a NO scavenger PTIO (100 mM) for 20 min, and then
incubated with 20 mM NOC 5 for 60 min (see ESIw). Scale bar, 20 mm.
Notes and references
1 E. Culotta and D. E. Koshland Jr., Science, 1992, 258, 1862–1865.
2 L. McQuade, J. Ma, G. Lowe, A. Ghatpande, A. Gelperin and
S. Lippard, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 8525–8530.
3 L. McQuade and S. Lippard, Curr. Opin. Chem. Biol., 2010, 14, 43–49.
4 J. Garthwaite, Trends Neurosci., 1991, 14, 60–67.
5 P. Ford and I. Lorkovic, Chem. Rev., 2002, 102, 993–1017.
6 Y. C. Hou, A. Janczuk and P. G. Wang, Curr. Pharm. Des., 1999,
5, 417–441.
7 J. C. Stoclet, B. Muller, R. Andriantsitohaina and A. Kleschyov,
Biochemistry (Moscow), 1998, 63, 826–832.
8 Y. Yang, S. Seidlit, M. Adams, V. Lynch, C. Schmidt, E. Anslyn
and J. Shear, J. Am. Chem. Soc., 2010, 132, 13114–13116.
9 H. Zheng, G. Q. Shang, S. Y. Yang, X. Gao and J. G. Xu, Org.
Lett., 2008, 10, 2357–2360.
10 Z. J. Tonzetich, L. E. McQuade and S. Lippard, Inorg. Chem.,
2010, 49, 6338–6348.
11 E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikichi,
Y. Hirata and T. Nagano, J. Am. Chem. Soc., 2005, 127, 3684–3685.
12 Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T. Nagano, J. Am.
Chem. Soc., 2004, 126, 3357–3367.
13 P. Wardman, Free Radical Biol. Med., 2007, 43, 995–1022.
14 X. Zhang, W. Kim, N. Hatcher, K. Potgieter, L. Moroz, R. Gillette
and S. J. weedler, J. Biol. Chem., 2002, 277, 48472–48478.
15 X. Ye, S. Rubakhin and J. Sweedler, J. Neurosci. Methods, 2008,
168, 373–382.
diselenide compound (calcd m/z 506.147 [M]2+; Scheme 1),
respectively. Moreover, rhodamine B was further verified as a
major final product by HPLC analysis (Fig. S6w). In addition, the
weak signals at m/z 545.109, 585.067 and 625.026 (Fig. S5w) were
also proven to be doubly charged ion peaks, which may be
ascribed to the formation of tri- (calcd m/z 545.106 [M]2+), tetra-
(calcd m/z 585.064 [M]2+), and penta-selenide (calcd m/z 625.022
[M]2+) compounds, respectively. Based on the above results, we
propose that the reaction of RBSe with NO may proceed through
the route depicted in Scheme 1: the addition of NO to the Se
atom of RBSe leads to the formation of an unstable compound 1,
which is then hydrolyzed into rhodamine B. In addition, the
unstable compound 1 may further undergo complicated coupling
reactions, generating a series of selenides.28
16 J. Y. Chatton and M. C. Broillet, Methods Enzymol., 2002, 359,
134–148.
17 M. C. Broillet, O. Randin and J. Y. Chatton, FEBS Lett., 2001,
491, 227–232.
18 L. McQuade and S. Lippard, Inorg. Chem., 2010, 49, 7464–7471.
19 K. J. Franz, N. Singh, B. Spingler and S. Lippard, Inorg. Chem.,
2000, 39, 4081–4092.
20 M. H. Lim and S. Lippard, J. Am. Chem. Soc., 2005, 127,
12170–12175.
21 B. Mondal, P. Kumar, P. Ghosh and A. Kalita, Chem. Commun.,
2011, 47, 2964–2966.
22 M. H. Lim, B. Wong, W. Pitcock, D. Mokshagundam, M. Baik
and S. Lippard, J. Am. Chem. Soc., 2006, 128, 14364–14373.
23 M. H. Lim, D. Xu and S. Lippard, Nat. Chem. Biol., 2006, 2,
375–380.
24 J. E. Freeman, B. Frei, G. N. Welch and J. Loscalzo, J. Clin.
Invest., 1995, 96, 394–400.
25 M. Asahi, J. Fujii, K. Suzuki, H. G. Seo, T. Kuzuya, M. Hori,
M. Tada, S. Fujii and N. Taniguchi, J. Biol. Chem., 1995, 270,
21035–21039.
26 M. Asahi, J. Fujii, T. Takao, T. Kuzuya, M. Hori, Y. Shimonishi
and N. Taniguchi, J. Biol. Chem., 1997, 272, 19152–19157.
27 K. Shimada, K. Goto, T. Kawashima, N. Takagi, Y. Choe and
S. Nagase, J. Am. Chem. Soc., 2004, 126, 13238–13239.
28 C. Wismach, W. Mont, P. G. Jones, L. Ernst, U. Papke,
G. Mugesh, W. Kaim, M. Wanner and K. Becker, Angew. Chem.,
Int. Ed., 2004, 43, 3970–3974.
29 H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, Chem.
Soc. Rev., 2008, 37, 1465–1472.
30 W. Shi and H. M. Ma, Chem. Commun., 2008, 1856–1858.
31 (a) W. Shi, S. N. Sun, X. H. Li and H. M. Ma, Inorg. Chem., 2010,
49, 1206–1210; (b) X. Chen, K. H. Baek, Y. Kim, S. J. Kim, I. Shin
and J. Yoon, Tetrahedron, 2010, 66, 4016–4021.
To evaluate the applicability of RBSe to biosystems, its
response to NO in Hela cells was investigated (see ESIw). Fig. 4
shows fluorescence images and corresponding differential
interference contrast images of RBSe-loaded Hela cells in the
absence and presence of NOC 5 [3-(aminopropyl)-1-hydroxy-
3-isopropyl-2-oxo-1-triazene, a NO donor]. As can be seen, the
RBSe-loaded Hela cells, incubated with NOC 5 for 30 min,
show a noticeable fluorescence (Fig. 4B), and the cells with a
longer incubation time of 60 min emit a much stronger
fluorescence (Fig. 4D). This indicates that the increase of
incubation time leads to more NO entering the cells. To
confirm that the fluorescence changes of the cells were caused
by NO, the RBSe-loaded Hela cells were pre-treated with a
NO scavenger PTIO [2-(4-carboxyphenyl)-4,4,5,5,-tetramethyl-
imidazoline-1-oxyl-3-oxide],33 and then incubated with NOC 5
for 60 min. As depicted in image E of Fig. 4, the fluorescence
intensity is indeed markedly suppressed. These results indicate
that RBSe, a less polar lactone derivative, is cell membrane-
permeable, and could well image the concentration change
of NO in intracellular environments. In addition, the major
reaction product of the probe is rhodamine B, which is a more
polar zwitterion and thus may be well-retained in cells. This
superior property makes RBSe a candidate with great potential
for imaging NO in biosystems.
In conclusion, we have developed a new strategy for NO
detection, which utilizes the interaction of NO with a selenide.
As a model probe for NO, RBSe exhibits excellent selectivity
and sensitivity, and its applicability to biosystems has been
demonstrated in fluorescence imaging of NO in Hela cells. The
32 A. Diaz, M. Ortiz, I. Sanchez, R. Cao, A. Mederos, J. Sanchiz and
F. Brito, J. Inorg. Biochem., 2003, 95, 283–290.
33 A. Roy, Y. K. Fung, X. J. Liu and K. Pahan, J. Biol. Chem., 2006,
281, 14971–14980.
c
8640 Chem. Commun., 2011, 47, 8638–8640
This journal is The Royal Society of Chemistry 2011