Oxidative Homocoupling of Alkynes Using SILP Catalysts
Combinatorial Chemistry & High Throughput Screening, 2012, Vol. 15, No. 2 177
Applications of ionic liquids in the chemical industry. Chem. Soc.
Rev., 2008, 37, 123-150.
Bun, C.C.; Bahnmueller, S.; Ke, C.P.; Srid, V.S.; Kee, L.W.;
Hawthorne, M.F. (R)-Binap-mediated asymmetric hydrogenation
[2]
(a) Seddon, K.R. Ionic liquids for clean technology. J. Chem.
Technol. Biotech., 1997, 68, 351-356; (b) Rogers, R. D.; Voth, G.
A. Ionic liquids. Acc. Chem. Res., 2007, 40, 1077-1078.
Chiappe, C.; Pieraccini, D. Ionic liquids: solvent properties and
organic reactivity J. Phys. Chem. Soc., 2005, 18, 275-297.
with a rhodacarborane catalyst in ionic-liquid media. Angew.
Chem. Int. Ed., 2003, 42, 3792-3795; (m) Brown, R.A.; Pollet, P.;
McKoon, E.; Eckert, C.A.; Liotta, C.L.; Jessop, P.G. Asymmetric
hydrogenation and catalyst recycling using ionic liquid and
supercritical carbon dioxide. J. Am. Chem. Soc., 2001, 123, 1254-
1255; (n) Dyson, P.J.; Laurenczy, G.; Ohlin, C.A.; Vallance, J.;
Welton, T. Determination of hydrogen concentration in ionic
liquids and the effect (or lack of) on rates of hydrogenation. Chem.
Commun., 2003, 2418-2419; (o) Dyson, P.J.; Ellis, D.J.; Welton, T.
A temperature-controlled reversible ionic liquid - water two phase -
single phase protocol for hydrogenation catalysis. Can. J. Chem.,
2001, 79, 705-708.
[3]
[4]
(a) Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004,
248, 2459-2477; (b) Welton, T. Room-temperature ionic liquids.
Solvents for synthesis and catalysis. Chem. Rev., 1999, 99, 2071-
2083; (c) Holbrey, J.D.; Seddon, K.R. Ionic liquids. Clean Prod.
Proc., 1999, 11, 223-236; (d) Earle, M.J.; Seddon, R. Ionic liquids.
Green solvents for the future. Pure Appl. Chem., 2000, 72, 1391-
1398; (e) Wilkes, J.S. Properties of ionic liquids for catalysis. J.
Mol. Catal. A: Chem., 2004, 214, 11-17; (f) Keskin, S.; Kayrak-
Talay, D.; Akman, U.; Hortacsu, Ö. A review of ionic liquids
towards supercritical fluids. J. Supercr. Fluids, 2007, 43, 150-180;
(g) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and
catalysis: Recent progress from knowledge to application. Appl.
Catal. A: Gen., 2010, 373, 1-56; (h) Werner, S.; Haumann, M.;
Wasserscheid, P. Ionic liquids in chemical engineering. Ann. Rev.
Chem. Biomol. Eng., 2010, 1, 203-230.
(a) Kottsieper, K.W.; Stelzer, O.; Wasserscheid, P. 1-
Vinylimidazole - a versatile building block for the synthesis of
cationic phosphines useful in ionic liquid biphasic catalysis. J. Mol.
Catal. A Chem., 2001, 175, 285-288; (b) Brauer, D.J.; Kottsieper,
K.W.; Liek, C.; Stelzer, H.; Waffenschmidt, H.; Wasserscheid, P.
Phosphines with 2-imidazolium and para-phenyl-2-imidazolium
moieties - synthesis and application in two-phase catalysis. J.
Organomet. Chem., 2001, 630, 177-184; (c) Favre, F.; Olivier-
Bourbigou, H.; Commereuc, D.; Saussine, L. Hydroformylation of
1-hexene with rhodium in non-aqueous ionic liquids : how to
design the solvent and the ligand to the reaction. Chem. Commun.,
2001, 1360-1361; (d) Knifton, J.F. Syngas reactions : Part XI. The
ruthenium ‘melt’ catalyzed oxonation of internal olefins. J. Mol.
Catal., 1987, 43, 65-77; (f) Knifton, J.F. Syngas reactions : Part
XIII. The ruthenium ‘melt’-catalyzed oxonation of terminal olefins.
J. Mol. Catal., 1988, 47, 99-116.
[7]
[8]
Muzart, J. Ionic liquids as solvents for catalyzed oxidations of
organic compounds. Adv. Synth. Catal., 2006, 348, 275-295.
(a) Boon, J.A.; Levisky, J.A.; Pflug, J.L.; Wilkes, J.S. Friedel-
Crafts reactions in ambient-temperature molten salts. J. Org.
Chem., 1986, 57, 480-483; (b) Koch, V.R.; Miller, L.L.;
Osteryoung, R.A. Electroinitiated Friedel-Crafts transalkylations in
a room-temperature molten-salt medium. J. Am. Chem. Soc., 1976,
98, 5277-5284; (c) Kim, D.S.; Ahn, W.S. Diphenylmethane
synthesis using ionic liquids as lewis acid catalyst. Korean J.
Chem. Eng., 2003, 20, 39-43; (d) Newman, D.S.; Winans, R.E.;
McBeth, R.L. Reactions of coal and model coal compounds in
room temperature molten salt mixtures. J. Electrochem. Soc., 1984,
131, 1079-1083; (e) Chauvin, Y.; Hirschauer, A.; Olivier, H.
Alkylation of isobutane with 2-butene using 1-butyl-3-
methylimidazolium chloride-aluminium chloride molten salts as
catalysts. J. Mol. Catal., 1994, 92, 155-165; (f) Ladnak, V.;
Hofmann, N.; Brausch, N.; Wasserscheid, P. Continuous, ionic
liquid-catalysed propylation of toluene in a liquid-liquid biphasic
reaction mode using a loop reactor concept. Adv. Synth. Catal.,
2007, 349, 719-726; (g) Bui, T. L. T.; Korth, W.; Aschauer, S.;
Jess, A. Alkylation of isobutane with 2-butene using ionic liquids
as catalyst. Green Chem., 2009, 11, 1961-1967.
[5]
[9]
(a) Adams, C.J.; Earle, M.J.; Roberts, G.; Seddon, K.R. Friedel–
Crafts reactions in room temperature ionic liquids. Chem.
Commun., 1998, 2097-2098; (b) Yeung, K.-S.; Farkas, M.E.; Qiu,
Z.; Yang, Z. Friedel–Crafts acylation of indoles in acidic
imidazolium chloroaluminate ionic liquid at room temperature.
Tetrahedron Lett., 2002, 43, 5193-5195; (c) Luer, G.D.; Bartak,
D.E. Electrochemistry of carbonium ions in acidic media. 1.
Triphenylmethyl ion in aluminum chloride containing melts. J.
Org. Chem., 1982, 47, 1238-1243; (d) Csihony, S.; Mehdi, H.;
Horvath, I.T. In situ infrared spectroscopic studies of the Friedel–
Crafts acetylation of benzene in ionic liquids using AlCl3 and
FeCl3. Green Chem., 2001, 3, 307-309; (e) Qiao, K.; Deng, Y.
Alkylations of benzene in room temperature ionic liquids modified
with HCl. J. Mol. Catal. A Chem., 2001, 171, 81-84; (f) Smith,
G.P.; Dworkin, A.S.; Pagni, R.M.; Zingg, S.P. Broensted
superacidity of hydrochloric acid in a liquid chloroaluminate.
Aluminum chloride - 1-ethyl-3-methyl-1H-imidazolium chloride. J.
Am. Chem. Soc., 1989, 111, 525-530; (g) Trulove, P.C.;
Osteryoung, R.A. Proton speciation in ambient-temperature
chloroaluminate ionic liquids. Inorg. Chem., 1992, 31, 3980-3985;
(h) Campbell, J.L.E.; Johnson, K.E. The chemistry of protons in
ambient-temperature ionic liquids: Solubility and electrochemical
profiles of HCl in HCl:ImCl:AlCl3 ionic liquids as a function of
pressure (295 K). J. Am. Chem. Soc., 1995, 117, 7791-7800; (i)
Elaiwi, A.; Hitchcock, P.B.; Seddon, K.R.; Srinivasan, N.; Tan, Y.-
M.; Welton, T.; Zora, J.A. Hydrogen bonding in imidazolium salts
and its implications for ambient-temperature halogenoaluminate
(III) ionic liquids. J. Chem. Soc, Dalton Trans., 1995, 3467-3472.
(a) Chauvin, Y.; Gilbert, B.; Guibard, I. Catalytic dimerization of
alkenes by nickel complexes in organochloroaluminate molten
salts. J. Chem. Soc, Chem. Commun., 1990, 1715-1716; (b)
Chauvin, Y.; Einloft, S.; Olivier, H. Catalytic dimerization of
propene by nickel-phosphine complexes in 1-Butyl-3-
methylimidazolium chloride/AlEtxCl3-x (x = 0, 1) ionic liquids. Ind.
Eng. Chem. Res., 1995, 34, 1149-1155; (c) Chauvin, Y.; Olivier,
H.; Wyrvalski, C.N.; Simon, L.C.; de Souza, R.F. Oligomerization
of n-Butenes catalyzed by nickel complexes dissolved in
organochloroaluminate ionic liquids. J. Catal., 1997, 165, 275-278;
(d) Simon, L.C.; Dupont, J.; de Souza, R.F. Two-phase n-butenes
dimerization by nickel complexes in molten salt media. Appl.
[6]
(a) Chauvin, Y.; Mussmann, L.; Olivier, H. A novel class of
versatile solvents for two-phase catalysis: Hydrogenation,
isomerization, and hydroformylation of alkenes catalyzed by
Rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew.
Chem., Int. Ed. Engl., 1995, 34, 2698-2700; (b) Suarez, P.A.Z.;
Dullius, J.E.L.; Einloft, S.; de Souza, R.F.; Dupont, J. The use of
new ionic liquids in two-phase catalytic hydrogenation reaction by
rhodium complexes. Polyhedron, 1996, 75, 1217-1219; (c)
MacLeod, S.; Rosso, R.J. Hydrogenation of low molecular weight
polymers in ionic liquids and the effects of added salt. Adv. Synth.
Catal., 2003, 345, 568-571; (d) Widegren, J.A.; Finke, R.G. A
review of the problem of distinguishing true homogeneous catalysis
from soluble or other metal-particle heterogeneous catalysis under
reducing conditions. J. Mol. Catal. A Chem., 2003, 198, 317-341;
(e) Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont,
A.C.; Plaquevent, J.C. Ionic liquids and chirality: opportunities and
challenges. Tetrahedron: Asymmetry, 2003, 14, 3081-3093; (f)
Anthony, J.L.; Magninn, E.J.; Brenneke, J.F. Solubilities and
thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-
methylimidazolium hexafluorophosphate. J. Phys. Chem. B, 2002,
706, 7315-7320; (g) Guernik, S.; Wolfson, A.; Herskowitz, M.;
Greenspoon, N.; Shimona, G. A novel system consisting of Rh–
DuPHOS and ionic liquid for asymmetric hydrogenations. Chem.
Commun., 2001, 2314-2315; (h) Monteiro, A.L.; Zinn, F.K.; de
Souza, R.F.; Dupont, J. Asymmetric hydrogenation of 2-arylacrylic
acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-
3-methylimidazolium tetrafluoroborate molten salt. Tetrahedron:
Asymmetry 1997, 8, 177-179; (i) Sun, Y.; Landau, R.N.; Wang, J.;
LeBlond, C.; Blackmond, D.G. A re-examination of pressure
effects on enantioselectivity in asymmetric catalytic hydrogenation.
J. Am. Chem. Soc., 1996, 118, 1348-1353; (j) Ngo, H.L.; Hu, A.;
Lin, W. Highly enantioselective catalytic asymmetric
hydrogenation of ꢀ-keto esters in room temperature ionic liquids.
Chem. Commun., 2003, 1912-1913; (k) Lee, S.; Zhang, Y.J.; Piao,
J.Y.; Yoon, H.; Song, C.E.; Choi, J.H.; Hong, J. Catalytic
asymmetric hydrogenation in a room temperature ionic liquid using
chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligand.
Chem. Commun., 2003, 2624-2625; (l) Yinghuai, Z.; Carpenter, K.;
[10]